Neural Algorithmic Reasoning
- URL: http://arxiv.org/abs/2105.02761v1
- Date: Thu, 6 May 2021 15:33:57 GMT
- Title: Neural Algorithmic Reasoning
- Authors: Petar Veli\v{c}kovi\'c, Charles Blundell
- Abstract summary: We argue that algorithms possess fundamentally different qualities to deep learning methods.
By representing elements in a continuous space of learnt algorithms, neural networks are able to adapt known algorithms more closely to real-world problems.
- Score: 11.566653801306844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithms have been fundamental to recent global technological advances and,
in particular, they have been the cornerstone of technical advances in one
field rapidly being applied to another. We argue that algorithms possess
fundamentally different qualities to deep learning methods, and this strongly
suggests that, were deep learning methods better able to mimic algorithms,
generalisation of the sort seen with algorithms would become possible with deep
learning -- something far out of the reach of current machine learning methods.
Furthermore, by representing elements in a continuous space of learnt
algorithms, neural networks are able to adapt known algorithms more closely to
real-world problems, potentially finding more efficient and pragmatic solutions
than those proposed by human computer scientists.
Here we present neural algorithmic reasoning -- the art of building neural
networks that are able to execute algorithmic computation -- and provide our
opinion on its transformative potential for running classical algorithms on
inputs previously considered inaccessible to them.
Related papers
- Reasoning Algorithmically in Graph Neural Networks [1.8130068086063336]
We aim to integrate the structured and rule-based reasoning of algorithms with adaptive learning capabilities of neural networks.
This dissertation provides theoretical and practical contributions to this area of research.
arXiv Detail & Related papers (2024-02-21T12:16:51Z) - Training Neural Networks with Internal State, Unconstrained
Connectivity, and Discrete Activations [66.53734987585244]
True intelligence may require the ability of a machine learning model to manage internal state.
We show that we have not yet discovered the most effective algorithms for training such models.
We present one attempt to design such a training algorithm, applied to an architecture with binary activations and only a single matrix of weights.
arXiv Detail & Related papers (2023-12-22T01:19:08Z) - The Clock and the Pizza: Two Stories in Mechanistic Explanation of
Neural Networks [59.26515696183751]
We show that algorithm discovery in neural networks is sometimes more complex.
We show that even simple learning problems can admit a surprising diversity of solutions.
arXiv Detail & Related papers (2023-06-30T17:59:13Z) - Dual Algorithmic Reasoning [9.701208207491879]
We propose to learn algorithms by exploiting duality of the underlying algorithmic problem.
We demonstrate that simultaneously learning the dual definition of these optimisation problems in algorithmic learning allows for better learning.
We then validate the real-world utility of our dual algorithmic reasoner by deploying it on a challenging brain vessel classification task.
arXiv Detail & Related papers (2023-02-09T08:46:23Z) - A Generalist Neural Algorithmic Learner [18.425083543441776]
We build a single graph neural network processor capable of learning to execute a wide range of algorithms.
We show that it is possible to effectively learn algorithms in a multi-task manner, so long as we can learn to execute them well in a single-task regime.
arXiv Detail & Related papers (2022-09-22T16:41:33Z) - Learning with Differentiable Algorithms [6.47243430672461]
This thesis explores combining classic algorithms and machine learning systems like neural networks.
The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm.
In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable sorting gates, and differentiable logic gate networks.
arXiv Detail & Related papers (2022-09-01T17:30:00Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
We show that it is possible to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks.
We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space.
We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction in the field.
arXiv Detail & Related papers (2020-03-06T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.