Practical and Rigorous Uncertainty Bounds for Gaussian Process
Regression
- URL: http://arxiv.org/abs/2105.02796v2
- Date: Tue, 8 Aug 2023 14:34:33 GMT
- Title: Practical and Rigorous Uncertainty Bounds for Gaussian Process
Regression
- Authors: Christian Fiedler, Carsten W. Scherer, Sebastian Trimpe
- Abstract summary: We introduce new uncertainty bounds that are rigorous, yet practically useful at the same time.
In particular, the bounds can be explicitly evaluated and are much less conservative than state of the art results.
We demonstrate these advantages and the usefulness of our results for learning-based control with numerical examples.
- Score: 10.33782982051778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Process Regression is a popular nonparametric regression method
based on Bayesian principles that provides uncertainty estimates for its
predictions. However, these estimates are of a Bayesian nature, whereas for
some important applications, like learning-based control with safety
guarantees, frequentist uncertainty bounds are required. Although such rigorous
bounds are available for Gaussian Processes, they are too conservative to be
useful in applications. This often leads practitioners to replacing these
bounds by heuristics, thus breaking all theoretical guarantees. To address this
problem, we introduce new uncertainty bounds that are rigorous, yet practically
useful at the same time. In particular, the bounds can be explicitly evaluated
and are much less conservative than state of the art results. Furthermore, we
show that certain model misspecifications lead to only graceful degradation. We
demonstrate these advantages and the usefulness of our results for
learning-based control with numerical examples.
Related papers
- Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Guaranteed Coverage Prediction Intervals with Gaussian Process Regression [0.6993026261767287]
This paper introduces an extension of GPR based on a Machine Learning framework called, Conformal Prediction (CP)
This extension guarantees the production of PIs with the required coverage even when the model is completely misspecified.
arXiv Detail & Related papers (2023-10-24T08:59:40Z) - Online Constraint Tightening in Stochastic Model Predictive Control: A
Regression Approach [49.056933332667114]
No analytical solutions exist for chance-constrained optimal control problems.
We propose a data-driven approach for learning the constraint-tightening parameters online during control.
Our approach yields constraint-tightening parameters that tightly satisfy the chance constraints.
arXiv Detail & Related papers (2023-10-04T16:22:02Z) - High-Probability Risk Bounds via Sequential Predictors [20.741036493022442]
We show that online to batch conversions applied to general online learning algorithms can bypass regret bounds.
We obtain nearly optimal high-probability risk bounds for several classical statistical estimation problems.
Our analysis relies on the fact that many online learning algorithms are improper, as they are not restricted to use predictors from a given reference class.
arXiv Detail & Related papers (2023-08-15T06:19:31Z) - Towards Reliable Uncertainty Quantification via Deep Ensembles in
Multi-output Regression Task [0.0]
This study aims to investigate the deep ensemble approach, an approximate Bayesian inference, in the multi-output regression task.
A trend towards underestimation of uncertainty as it increases is observed for the first time.
We propose the deep ensemble framework that applies the post-hoc calibration method to improve its uncertainty quantification performance.
arXiv Detail & Related papers (2023-03-28T05:10:57Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance.
We present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance.
Our approach is shown to yield a calibrated model under reasonable assumptions.
arXiv Detail & Related papers (2023-02-23T12:17:36Z) - Information-Theoretic Safe Exploration with Gaussian Processes [89.31922008981735]
We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an unknown (safety) constraint.
Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case.
We propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate.
arXiv Detail & Related papers (2022-12-09T15:23:58Z) - Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
Safety-Critical Applications [71.23286211775084]
We introduce robust Gaussian process uniform error bounds in settings with unknown hyper parameters.
Our approach computes a confidence region in the space of hyper parameters, which enables us to obtain a probabilistic upper bound for the model error.
Experiments show that the bound performs significantly better than vanilla and fully Bayesian processes.
arXiv Detail & Related papers (2021-09-06T17:10:01Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
Uncertainty is the only certainty there is.
Traditionally, the direct regression formulation is considered and the uncertainty is modeled by modifying the output space to a certain family of probabilistic distributions.
How to model the uncertainty within the present-day technologies for regression remains an open issue.
arXiv Detail & Related papers (2021-03-25T06:56:09Z) - Uniform Error and Posterior Variance Bounds for Gaussian Process
Regression with Application to Safe Control [11.42419064387567]
We present a novel uniform error bound using Lipschitz and an analysis of the posterior variance function for a large class of kernels.
We show how these results can be used to guarantee safe control of an unknown dynamical system.
arXiv Detail & Related papers (2021-01-13T20:06:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.