An Influence-based Approach for Root Cause Alarm Discovery in Telecom
Networks
- URL: http://arxiv.org/abs/2105.03092v1
- Date: Fri, 7 May 2021 07:41:46 GMT
- Title: An Influence-based Approach for Root Cause Alarm Discovery in Telecom
Networks
- Authors: Keli Zhang, Marcus Kalander, Min Zhou, Xi Zhang and Junjian Ye
- Abstract summary: In practice, accurate and self-adjustable alarm root cause analysis is a great challenge due to network complexity and vast amounts of alarms.
We propose a data-driven framework for root cause alarm localization, combining both causal inference and network embedding techniques.
We evaluate our method on artificial data and real-world telecom data, showing a significant improvement over the best baselines.
- Score: 7.438302177990416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alarm root cause analysis is a significant component in the day-to-day
telecommunication network maintenance, and it is critical for efficient and
accurate fault localization and failure recovery. In practice, accurate and
self-adjustable alarm root cause analysis is a great challenge due to network
complexity and vast amounts of alarms. A popular approach for failure root
cause identification is to construct a graph with approximate edges, commonly
based on either event co-occurrences or conditional independence tests.
However, considerable expert knowledge is typically required for edge pruning.
We propose a novel data-driven framework for root cause alarm localization,
combining both causal inference and network embedding techniques. In this
framework, we design a hybrid causal graph learning method (HPCI), which
combines Hawkes Process with Conditional Independence tests, as well as propose
a novel Causal Propagation-Based Embedding algorithm (CPBE) to infer edge
weights. We subsequently discover root cause alarms in a real-time data stream
by applying an influence maximization algorithm on the weighted graph. We
evaluate our method on artificial data and real-world telecom data, showing a
significant improvement over the best baselines.
Related papers
- Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks [50.87615167799367]
We certify Graph Neural Networks (GNNs) against poisoning attacks, including backdoors, targeting the node features of a given graph.
Our framework provides fundamental insights into the role of graph structure and its connectivity on the worst-case behavior of convolution-based and PageRank-based GNNs.
arXiv Detail & Related papers (2024-07-15T16:12:51Z) - KGroot: Enhancing Root Cause Analysis through Knowledge Graphs and Graph
Convolutional Neural Networks [14.336830860792707]
KGroot uses event knowledge and the correlation between events to perform root cause reasoning.
Experiments demonstrate KGroot can locate the root cause with accuracy of 93.5% top 3 potential causes in second-level.
arXiv Detail & Related papers (2024-02-11T10:30:38Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Disentangled Causal Graph Learning for Online Unsupervised Root Cause
Analysis [49.910053255238566]
Root cause analysis (RCA) can identify the root causes of system faults/failures by analyzing system monitoring data.
Previous research has mostly focused on developing offline RCA algorithms, which often require manually initiating the RCA process.
We propose CORAL, a novel online RCA framework that can automatically trigger the RCA process and incrementally update the RCA model.
arXiv Detail & Related papers (2023-05-18T01:27:48Z) - Hierarchical Graph Neural Networks for Causal Discovery and Root Cause
Localization [52.72490784720227]
REASON consists of Topological Causal Discovery and Individual Causal Discovery.
The Topological Causal Discovery component aims to model the fault propagation in order to trace back to the root causes.
The Individual Causal Discovery component focuses on capturing abrupt change patterns of a single system entity.
arXiv Detail & Related papers (2023-02-03T20:17:45Z) - Graph Neural Network-based Early Bearing Fault Detection [0.18275108630751835]
A novel graph neural network-based fault detection method is proposed.
It builds a bridge between AI and real-world running mechanical systems.
We find that the proposed method can successfully detect faulty objects that are mixed in the normal object region.
arXiv Detail & Related papers (2022-04-24T08:54:55Z) - NetRCA: An Effective Network Fault Cause Localization Algorithm [22.88986905436378]
Localizing root cause of network faults is crucial to network operation and maintenance.
We propose a novel algorithm named NetRCA to deal with this problem.
Experiments and analysis are conducted on the real-world dataset from ICASSP 2022 AIOps Challenge.
arXiv Detail & Related papers (2022-02-23T02:03:35Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.