Enhancing Transformers with Gradient Boosted Decision Trees for NLI
Fine-Tuning
- URL: http://arxiv.org/abs/2105.03791v1
- Date: Sat, 8 May 2021 22:31:51 GMT
- Title: Enhancing Transformers with Gradient Boosted Decision Trees for NLI
Fine-Tuning
- Authors: Benjamin Minixhofer, Milan Gritta, Ignacio Iacobacci
- Abstract summary: We introduce FreeGBDT, a method of fitting a GBDT head on the features computed during fine-tuning to increase performance without additional computation by the neural network.
We demonstrate the effectiveness of our method on several NLI datasets using a strong baseline model.
- Score: 7.906608953906889
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transfer learning has become the dominant paradigm for many natural language
processing tasks. In addition to models being pretrained on large datasets,
they can be further trained on intermediate (supervised) tasks that are similar
to the target task. For small Natural Language Inference (NLI) datasets,
language modelling is typically followed by pretraining on a large (labelled)
NLI dataset before fine-tuning with each NLI subtask. In this work, we explore
Gradient Boosted Decision Trees (GBDTs) as an alternative to the commonly used
Multi-Layer Perceptron (MLP) classification head. GBDTs have desirable
properties such as good performance on dense, numerical features and are
effective where the ratio of the number of samples w.r.t the number of features
is low. We then introduce FreeGBDT, a method of fitting a GBDT head on the
features computed during fine-tuning to increase performance without additional
computation by the neural network. We demonstrate the effectiveness of our
method on several NLI datasets using a strong baseline model (RoBERTa-large
with MNLI pretraining). The FreeGBDT shows a consistent improvement over the
MLP classification head.
Related papers
- Team up GBDTs and DNNs: Advancing Efficient and Effective Tabular Prediction with Tree-hybrid MLPs [20.67800392863432]
Tabular datasets play a crucial role in various applications.
Two prominent model types, Boosted Decision Trees (GBDTs) and Deep Neural Networks (DNNs), have demonstrated performance advantages on distinct prediction tasks.
This paper proposes a new framework that amalgamates the advantages of both GBDTs and DNNs, resulting in a DNN algorithm that is as efficient as GBDTs and is competitively effective regardless of dataset preferences.
arXiv Detail & Related papers (2024-07-13T07:13:32Z) - Making Pre-trained Language Models Great on Tabular Prediction [50.70574370855663]
The transferability of deep neural networks (DNNs) has made significant progress in image and language processing.
We present TP-BERTa, a specifically pre-trained LM for tabular data prediction.
A novel relative magnitude tokenization converts scalar numerical feature values to finely discrete, high-dimensional tokens, and an intra-feature attention approach integrates feature values with the corresponding feature names.
arXiv Detail & Related papers (2024-03-04T08:38:56Z) - Sorted LLaMA: Unlocking the Potential of Intermediate Layers of Large
Language Models for Dynamic Inference [32.62084449979531]
We extend SortedNet to generative NLP tasks by replacing Standard Fine-Tuning (SFT) with Sorted Fine-Tuning (SoFT)
Our approach boosts model efficiency, eliminating the need for multiple models for various scenarios during inference.
Our results show the superior performance of sub-models in comparison to Standard Fine-Tuning and SFT+ICT (Early-Exit)
arXiv Detail & Related papers (2023-09-16T11:58:34Z) - CHAPTER: Exploiting Convolutional Neural Network Adapters for
Self-supervised Speech Models [62.60723685118747]
Self-supervised learning (SSL) is a powerful technique for learning representations from unlabeled data.
We propose an efficient tuning method specifically designed for SSL speech model, by applying CNN adapters at the feature extractor.
We empirically found that adding CNN to the feature extractor can help the adaptation on emotion and speaker tasks.
arXiv Detail & Related papers (2022-12-01T08:50:12Z) - Fine-Tuning Pre-Trained Language Models Effectively by Optimizing
Subnetworks Adaptively [32.001304911395756]
We propose a Dynamic Selection (DPS) algorithm for the large-scale pre-trained models during fine-tuning.
Experiments on the GLUE benchmark show that DPS outperforms previous fine-tuning methods in terms of overall performance and stability.
arXiv Detail & Related papers (2022-11-03T08:32:12Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient
Framework [10.656788279434798]
We propose a simple and efficient learning framework, TLM, that does not rely on large-scale pretraining.
On eight classification datasets in four domains, TLM achieves results better than or similar to pretrained language models.
arXiv Detail & Related papers (2021-11-07T17:13:59Z) - DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language
Models [152.29364079385635]
As pre-trained models grow bigger, the fine-tuning process can be time-consuming and computationally expensive.
We propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights.
Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning and (ii) resource-efficient inference.
arXiv Detail & Related papers (2021-10-30T03:29:47Z) - WARP: Word-level Adversarial ReProgramming [13.08689221166729]
In many applications it is preferable to tune much smaller sets of parameters, so that the majority of parameters can be shared across multiple tasks.
We present an alternative approach based on adversarial reprogramming, which extends earlier work on automatic prompt generation.
We show that this approach outperforms other methods with a similar number of trainable parameters on SST-2 and MNLI datasets.
arXiv Detail & Related papers (2021-01-01T00:41:03Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - Parameter-Efficient Transfer from Sequential Behaviors for User Modeling
and Recommendation [111.44445634272235]
In this paper, we develop a parameter efficient transfer learning architecture, termed as PeterRec.
PeterRec allows the pre-trained parameters to remain unaltered during fine-tuning by injecting a series of re-learned neural networks.
We perform extensive experimental ablation to show the effectiveness of the learned user representation in five downstream tasks.
arXiv Detail & Related papers (2020-01-13T14:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.