Fine-Tuning Pre-Trained Language Models Effectively by Optimizing
Subnetworks Adaptively
- URL: http://arxiv.org/abs/2211.01642v1
- Date: Thu, 3 Nov 2022 08:32:12 GMT
- Title: Fine-Tuning Pre-Trained Language Models Effectively by Optimizing
Subnetworks Adaptively
- Authors: Haojie Zhang, Ge Li, Jia Li, Zhongjin Zhang, Yuqi Zhu, Zhi Jin
- Abstract summary: We propose a Dynamic Selection (DPS) algorithm for the large-scale pre-trained models during fine-tuning.
Experiments on the GLUE benchmark show that DPS outperforms previous fine-tuning methods in terms of overall performance and stability.
- Score: 32.001304911395756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale pre-trained language models have achieved impressive results on a
wide range of downstream tasks recently. However, fine-tuning an extremely
large-scale pre-trained language model on limited target datasets is often
plagued by overfitting and representation degradation. In this paper, we
propose a Dynamic Parameter Selection (DPS) algorithm for the large-scale
pre-trained models during fine-tuning, which adaptively selects a more
promising subnetwork to perform staging updates based on gradients of
back-propagation. Experiments on the GLUE benchmark show that DPS outperforms
previous fine-tuning methods in terms of overall performance and stability, and
consistently achieves better results with variable pre-trained language models.
In addition, DPS brings a large magnitude of improvement in out-of-domain
transferring experiments and low-resource scenarios, which shows that it can
maintain stable general contextual features and reduce the representation
collapse. We release our code at https://github.com/ZhangHaojie077/DPS
Related papers
- DRPruning: Efficient Large Language Model Pruning through Distributionally Robust Optimization [61.492590008258986]
Large language models (LLMs) deliver impressive results but face challenges from increasing model sizes and computational costs.
We propose DRPruning, which incorporates distributionally robust optimization to restore balanced performance across domains.
arXiv Detail & Related papers (2024-11-21T12:02:39Z) - LEVI: Generalizable Fine-tuning via Layer-wise Ensemble of Different Views [28.081794908107604]
Fine-tuning is used to leverage the power of pre-trained foundation models in new downstream tasks.
Recent studies have observed challenges in the generalization of fine-tuned models to unseen distributions.
We propose a novel generalizable fine-tuning method LEVI, where the pre-trained model is adaptively ensembled layer-wise with a small task-specific model.
arXiv Detail & Related papers (2024-02-07T08:16:40Z) - Empirical Analysis of Efficient Fine-Tuning Methods for Large
Pre-Trained Language Models [4.096453902709292]
BitFit and adapter modules are compared to standard full model fine-tuning.
The BitFit approach matches full fine-tuning performance across varying amounts of training data.
adapter modules exhibit high variability, with inconsistent gains over default models.
arXiv Detail & Related papers (2024-01-08T17:44:43Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
We study self-training as one of the predominant semi-supervised learning approaches.
We present UPET, a novel Uncertainty-aware self-Training framework.
We show that UPET achieves a substantial improvement in terms of performance and efficiency.
arXiv Detail & Related papers (2023-10-19T02:18:29Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language
Models [152.29364079385635]
As pre-trained models grow bigger, the fine-tuning process can be time-consuming and computationally expensive.
We propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights.
Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning and (ii) resource-efficient inference.
arXiv Detail & Related papers (2021-10-30T03:29:47Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Dynamic Scale Training for Object Detection [111.33112051962514]
We propose a Dynamic Scale Training paradigm (abbreviated as DST) to mitigate scale variation challenge in object detection.
Experimental results demonstrate the efficacy of our proposed DST towards scale variation handling.
It does not introduce inference overhead and could serve as a free lunch for general detection configurations.
arXiv Detail & Related papers (2020-04-26T16:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.