NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient
Framework
- URL: http://arxiv.org/abs/2111.04130v1
- Date: Sun, 7 Nov 2021 17:13:59 GMT
- Title: NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient
Framework
- Authors: Xingcheng Yao, Yanan Zheng, Xiaocong Yang, Zhilin Yang
- Abstract summary: We propose a simple and efficient learning framework, TLM, that does not rely on large-scale pretraining.
On eight classification datasets in four domains, TLM achieves results better than or similar to pretrained language models.
- Score: 10.656788279434798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pretrained language models have become the standard approach for many NLP
tasks due to strong performance, but they are very expensive to train. We
propose a simple and efficient learning framework, TLM, that does not rely on
large-scale pretraining. Given some labeled task data and a large general
corpus, TLM uses task data as queries to retrieve a tiny subset of the general
corpus and jointly optimizes the task objective and the language modeling
objective from scratch. On eight classification datasets in four domains, TLM
achieves results better than or similar to pretrained language models (e.g.,
RoBERTa-Large) while reducing the training FLOPs by two orders of magnitude.
With high accuracy and efficiency, we hope TLM will contribute to democratizing
NLP and expediting its development.
Related papers
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
Large language models (LLMs) have demonstrated remarkable success in NLP tasks.
We benchmarked one supervised classic machine learning model based on Support Vector Machines (SVMs), three supervised pretrained language models (PLMs) based on RoBERTa, BERTweet, and SocBERT, and two LLM based classifiers (GPT3.5 and GPT4), across 6 text classification tasks.
Our comprehensive experiments demonstrate that employ-ing data augmentation using LLMs (GPT-4) with relatively small human-annotated data to train lightweight supervised classification models achieves superior results compared to training with human-annotated data
arXiv Detail & Related papers (2024-03-27T22:05:10Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
We propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of unstructured texts at scale.
Our empirical study shows CoAnnotating to be an effective means to allocate work from results on different datasets, with up to 21% performance improvement over random baseline.
arXiv Detail & Related papers (2023-10-24T08:56:49Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - Pre-Training to Learn in Context [138.0745138788142]
The ability of in-context learning is not fully exploited because language models are not explicitly trained to learn in context.
We propose PICL (Pre-training for In-Context Learning), a framework to enhance the language models' in-context learning ability.
Our experiments show that PICL is more effective and task-generalizable than a range of baselines, outperforming larger language models with nearly 4x parameters.
arXiv Detail & Related papers (2023-05-16T03:38:06Z) - Distilling Step-by-Step! Outperforming Larger Language Models with Less
Training Data and Smaller Model Sizes [91.58845026796149]
We introduce Distilling step-by-step, a new mechanism that trains small models that outperform large language models.
We present three findings across 4 NLP benchmarks.
arXiv Detail & Related papers (2023-05-03T17:50:56Z) - SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
Models [4.114555639014612]
We show the benefits of using unstructured weight sparsity to train only a subset of weights during pre-training.
We demonstrate that we can induce up to 75% sparsity into a 1.3B parameter GPT-3 XL model resulting in a 2.5x reduction in pre-training FLOPs.
arXiv Detail & Related papers (2023-03-18T17:56:01Z) - CSS-LM: A Contrastive Framework for Semi-supervised Fine-tuning of
Pre-trained Language Models [59.49705076369856]
We introduce a novel framework to improve the fine-tuning phase of pre-trained language models (PLMs)
We retrieve positive and negative instances from large-scale unlabeled corpora according to their domain-level and class-level semantic relatedness to a task.
We then perform contrastive semi-supervised learning on both the retrieved unlabeled and original labeled instances to help PLMs capture crucial task-related semantic features.
arXiv Detail & Related papers (2021-02-07T09:27:26Z) - Self-Supervised Meta-Learning for Few-Shot Natural Language
Classification Tasks [40.97125791174191]
We propose a self-supervised approach to generate a large, rich, meta-learning task distribution from unlabeled text.
We show that this meta-training leads to better few-shot generalization than language-model pre-training followed by finetuning.
arXiv Detail & Related papers (2020-09-17T17:53:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.