論文の概要: Estimation of 3D Human Pose Using Prior Knowledge
- arxiv url: http://arxiv.org/abs/2105.03807v1
- Date: Sun, 9 May 2021 01:15:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 10:02:32.087807
- Title: Estimation of 3D Human Pose Using Prior Knowledge
- Title(参考訳): 事前知識を用いた3次元ポーズ推定
- Authors: Shu Chen, Lei Zhang and Beiji Zou
- Abstract要約: 2次元関節の位置から3次元の人間のポーズを推定することは有望な結果を示した。
骨長とカメラパラメータを2次元の関節座標と組み合わせて入力する。
h36m実験の結果, 従来の3次元姿勢推定法よりも良好な結果が得られた。
- 参考スコア(独自算出の注目度): 14.339200120424703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating three-dimensional human poses from the positions of
two-dimensional joints has shown promising results.However, using
two-dimensional joint coordinates as input loses more information than
image-based approaches and results in ambiguity.In order to overcome this
problem, we combine bone length and camera parameters with two-dimensional
joint coordinates for input.This combination is more discriminative than the
two-dimensional joint coordinates in that it can improve the accuracy of the
model's prediction depth and alleviate the ambiguity that comes from projecting
three-dimensional coordinates into two-dimensional space. Furthermore, we
introduce direction constraints which can better measure the difference between
the ground truth and the output of the proposed model. The experimental results
on the H36M show that the method performed better than other state-of-the-art
three-dimensional human pose estimation approaches.
- Abstract(参考訳): Estimating three-dimensional human poses from the positions of two-dimensional joints has shown promising results.However, using two-dimensional joint coordinates as input loses more information than image-based approaches and results in ambiguity.In order to overcome this problem, we combine bone length and camera parameters with two-dimensional joint coordinates for input.This combination is more discriminative than the two-dimensional joint coordinates in that it can improve the accuracy of the model's prediction depth and alleviate the ambiguity that comes from projecting three-dimensional coordinates into two-dimensional space.
さらに,本論文では,基礎的真理と提案モデルの出力との差をよりよく測定できる方向制約を導入する。
h36m実験の結果, 従来の3次元姿勢推定法よりも良好な結果が得られた。
関連論文リスト
- StackFLOW: Monocular Human-Object Reconstruction by Stacked Normalizing Flow with Offset [56.71580976007712]
本研究では,人間のメッシュと物体メッシュの表面から密にサンプリングされたアンカー間の人物体オフセットを用いて,人物体空間関係を表現することを提案する。
この表現に基づいて、画像から人・物間の空間関係の後方分布を推定するスタック正規化フロー(StackFLOW)を提案する。
最適化段階では、サンプルの可能性を最大化することにより、人体ポーズと物体6Dポーズを微調整する。
論文 参考訳(メタデータ) (2024-07-30T04:57:21Z) - JOTR: 3D Joint Contrastive Learning with Transformers for Occluded Human
Mesh Recovery [84.67823511418334]
本稿では,3次元メッシュ復元のためのTRansformersフレームワークを用いた3次元ジョイントコントラスト学習について述べる。
提案手法は,2D$&$3D対応結果を得るために,2Dおよび3D表現を融合するエンコーダ・デコーダ変換器アーキテクチャを含む。
論文 参考訳(メタデータ) (2023-07-31T02:58:58Z) - (Fusionformer):Exploiting the Joint Motion Synergy with Fusion Network
Based On Transformer for 3D Human Pose Estimation [1.52292571922932]
多くの従来手法では、局所的な関節情報の理解が欠けていた。
提案手法では,グローバル・テンポラル・セルフ・トラジェクトリ・モジュールとクロス・テンポラル・セルフ・トラジェクトリ・モジュールを導入する。
その結果、Human3.6Mデータセットでは2.4%のMPJPEと4.3%のP-MPJPEが改善された。
論文 参考訳(メタデータ) (2022-10-08T12:22:10Z) - Mutual Adaptive Reasoning for Monocular 3D Multi-Person Pose Estimation [45.06447187321217]
既存のボトムアップ手法のほとんどは、カメラ中心の人間のポーズ推定を2つの無関係なサブタスクとして扱う。
両サブタスクの相互利益を利用する統一モデルを提案する。
私たちのモデルは、既存のボトムアップメソッドやトップダウンメソッドよりもはるかに高速に動作します。
論文 参考訳(メタデータ) (2022-07-16T10:54:40Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
カメラ空間における光マーチング (RiCS) は、3次元における前景物体の自己閉塞を2次元の自己閉塞マップに表現する新しい手法である。
表現マップは画像の質を高めるだけでなく,時間的コヒーレントな複雑な影効果をモデル化できることを示す。
論文 参考訳(メタデータ) (2022-05-14T05:35:35Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - A hybrid classification-regression approach for 3D hand pose estimation
using graph convolutional networks [1.0152838128195467]
目的ごとの関係制約を学習する2段階のGCNベースのフレームワークを提案する。
第1フェーズは2D/3D空間を量子化し、その局所性に基づいて関節を2D/3Dブロックに分類する。
第2段階ではGCNベースのモジュールを使用し、隣り合う適応アルゴリズムを用いて関節関係を決定する。
論文 参考訳(メタデータ) (2021-05-23T10:09:10Z) - Beyond Weak Perspective for Monocular 3D Human Pose Estimation [6.883305568568084]
単眼映像からの3次元関節位置と方向予測の課題を考察する。
まず,市販のポーズ推定アルゴリズムを用いて2次元関節位置を推定する。
次に、初期パラメータを受信するSMPLifyアルゴリズムに準拠する。
論文 参考訳(メタデータ) (2020-09-14T16:23:14Z) - Multi-person 3D Pose Estimation in Crowded Scenes Based on Multi-View
Geometry [62.29762409558553]
マルチパーソナライズされた3次元ポーズ推定手法における特徴マッチングと深さ推定のコアは、エピポーラ制約である。
スパサーの群衆シーンにおけるこの定式化の良好なパフォーマンスにもかかわらず、その効果はより密集した群衆の状況下でしばしば挑戦される。
本稿では,マルチパーソン3次元ポーズ推定式から脱却し,群衆ポーズ推定として再編成する。
論文 参考訳(メタデータ) (2020-07-21T17:59:36Z) - Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A
Geometric Approach [76.10879433430466]
多視点画像と人手足に装着したIMUから3次元人間のポーズを推定する。
まず2つの信号から2Dのポーズを検出し、3D空間に持ち上げる。
単純な2段階のアプローチは、公開データセット上の大きなマージンによる最先端のエラーを低減する。
論文 参考訳(メタデータ) (2020-03-25T00:26:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。