Preserving Privacy in Human-Motion Affect Recognition
- URL: http://arxiv.org/abs/2105.03958v1
- Date: Sun, 9 May 2021 15:26:21 GMT
- Title: Preserving Privacy in Human-Motion Affect Recognition
- Authors: Matthew Malek-Podjaski, Fani Deligianni
- Abstract summary: This work evaluates the effectiveness of existing methods at recognising emotions using both 3D temporal joint signals and manually extracted features.
We propose a cross-subject transfer learning technique for training a multi-encoder autoencoder deep neural network to learn disentangled latent representations of human motion features.
- Score: 4.753703852165805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human motion is a biomarker used extensively in clinical analysis to monitor
the progression of neurological diseases and mood disorders. Since perceptions
of emotions are also interleaved with body posture and movements, emotion
recognition from human gait can be used to quantitatively monitor mood changes
that are often related to neurological disorders. Many existing solutions often
use shallow machine learning models with raw positional data or manually
extracted features to achieve this. However, gait is composed of many highly
expressive characteristics that can be used to identify human subjects, and
most solutions fail to address this, disregarding the subject's privacy. This
work evaluates the effectiveness of existing methods at recognising emotions
using both 3D temporal joint signals and manually extracted features. We also
show that this data can easily be exploited to expose a subject's identity.
Therefore to this end, we propose a cross-subject transfer learning technique
for training a multi-encoder autoencoder deep neural network to learn
disentangled latent representations of human motion features. By disentangling
subject biometrics from the gait data, we show that the subjects privacy is
preserved while the affect recognition performance outperforms traditional
methods.
Related papers
- Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
We develop a Pre-trained model based Multimodal Mood Reader for cross-subject emotion recognition.
The model learns universal latent representations of EEG signals through pre-training on large scale dataset.
Extensive experiments on public datasets demonstrate Mood Reader's superior performance in cross-subject emotion recognition tasks.
arXiv Detail & Related papers (2024-05-28T14:31:11Z) - Emotion Recognition from the perspective of Activity Recognition [0.0]
Appraising human emotional states, behaviors, and reactions displayed in real-world settings can be accomplished using latent continuous dimensions.
For emotion recognition systems to be deployed and integrated into real-world mobile and computing devices, we need to consider data collected in the world.
We propose a novel three-stream end-to-end deep learning regression pipeline with an attention mechanism.
arXiv Detail & Related papers (2024-03-24T18:53:57Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3D pose data can now be reliably extracted from multi-view video sequences without manual intervention.
We propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations.
To reduce the domain gap, during training, we swap neural and behavioral data across animals that seem to be performing similar actions.
arXiv Detail & Related papers (2021-12-02T12:45:46Z) - Affect-DML: Context-Aware One-Shot Recognition of Human Affect using
Deep Metric Learning [29.262204241732565]
Existing methods assume that all emotions-of-interest are given a priori as annotated training examples.
We conceptualize one-shot recognition of emotions in context -- a new problem aimed at recognizing human affect states in finer particle level from a single support sample.
All variants of our model clearly outperform the random baseline, while leveraging the semantic scene context consistently improves the learnt representations.
arXiv Detail & Related papers (2021-11-30T10:35:20Z) - Non-contact Pain Recognition from Video Sequences with Remote
Physiological Measurements Prediction [53.03469655641418]
We present a novel multi-task learning framework which encodes both appearance changes and physiological cues in a non-contact manner for pain recognition.
We establish the state-of-the-art performance of non-contact pain recognition on publicly available pain databases.
arXiv Detail & Related papers (2021-05-18T20:47:45Z) - Emotion pattern detection on facial videos using functional statistics [62.997667081978825]
We propose a technique based on Functional ANOVA to extract significant patterns of face muscles movements.
We determine if there are time-related differences on expressions among emotional groups by using a functional F-test.
arXiv Detail & Related papers (2021-03-01T08:31:08Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
We investigate the suitability of state-of-the-art deep learning architectures for continuous emotion recognition using long video sequences captured in-the-wild.
We have developed and evaluated convolutional recurrent neural networks combining 2D-CNNs and long short term-memory units, and inflated 3D-CNN models, which are built by inflating the weights of a pre-trained 2D-CNN model during fine-tuning.
arXiv Detail & Related papers (2020-11-18T13:42:05Z) - Impact of multiple modalities on emotion recognition: investigation into
3d facial landmarks, action units, and physiological data [4.617405932149653]
We analyze 3D facial data, action units, and physiological data as it relates to their impact on emotion recognition.
Our analysis indicates that both 3D facial landmarks and physiological data are encouraging for expression/emotion recognition.
On the other hand, while action units can positively impact emotion recognition when fused with other modalities, the results suggest it is difficult to detect emotion using them in a unimodal fashion.
arXiv Detail & Related papers (2020-05-17T18:59:57Z) - Emotion Recognition From Gait Analyses: Current Research and Future
Directions [48.93172413752614]
gait conveys information about the walker's emotion.
The mapping between various emotions and gait patterns provides a new source for automated emotion recognition.
gait is remotely observable, more difficult to imitate, and requires less cooperation from the subject.
arXiv Detail & Related papers (2020-03-13T08:22:33Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.