PEARL: Parallelized Expert-Assisted Reinforcement Learning for Scene
Rearrangement Planning
- URL: http://arxiv.org/abs/2105.04088v1
- Date: Mon, 10 May 2021 03:27:16 GMT
- Title: PEARL: Parallelized Expert-Assisted Reinforcement Learning for Scene
Rearrangement Planning
- Authors: Hanqing Wang, Zan Wang, Wei Liang, Lap-Fai Yu
- Abstract summary: We propose a fine-grained action definition for Scene Rearrangement Planning (SRP) and introduce a large-scale scene rearrangement dataset.
We also propose a novel learning paradigm to efficiently train an agent through self-playing, without any prior knowledge.
- Score: 28.9887381071402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene Rearrangement Planning (SRP) is an interior task proposed recently. The
previous work defines the action space of this task with handcrafted
coarse-grained actions that are inflexible to be used for transforming scene
arrangement and intractable to be deployed in practice. Additionally, this new
task lacks realistic indoor scene rearrangement data to feed popular
data-hungry learning approaches and meet the needs of quantitative evaluation.
To address these problems, we propose a fine-grained action definition for SRP
and introduce a large-scale scene rearrangement dataset. We also propose a
novel learning paradigm to efficiently train an agent through self-playing,
without any prior knowledge. The agent trained via our paradigm achieves
superior performance on the introduced dataset compared to the baseline agents.
We provide a detailed analysis of the design of our approach in our
experiments.
Related papers
- Retrieval Instead of Fine-tuning: A Retrieval-based Parameter Ensemble for Zero-shot Learning [22.748835458594744]
We introduce Retrieval-based.
Ensemble (RPE), a new method that creates a vectorized database of.
Low-Rank Adaptations (LoRAs)
RPE minimizes the need for extensive training and eliminates the requirement for labeled data, making it particularly effective for zero-shot learning.
RPE is well-suited for privacy-sensitive domains like healthcare, as it modifies model parameters without accessing raw data.
arXiv Detail & Related papers (2024-10-13T16:28:38Z) - LLM-enhanced Scene Graph Learning for Household Rearrangement [28.375701371003107]
Household rearrangement task involves spotting misplaced objects in a scene and accommodate them with proper places.
We propose to mine object functionality with user preference alignment directly from the scene itself.
Our method achieves state-of-the-art performance on misplacement detection and the following rearrangement planning.
arXiv Detail & Related papers (2024-08-22T03:03:04Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
We show how to adapt a pre-trained Vision Transformer to downstream recognition tasks with only a few learnable parameters.
We synthesize a task-specific query with a learnable and lightweight module, which is independent of the pre-trained model.
Our method achieves state-of-the-art performance under memory constraints, showcasing its applicability in real-world situations.
arXiv Detail & Related papers (2024-07-09T15:45:04Z) - Fully Fine-tuned CLIP Models are Efficient Few-Shot Learners [8.707819647492467]
We explore capturing the task-specific information via meticulous refinement of entire Vision-Language Models (VLMs)
To mitigate these issues, we propose a framework named CLIP-CITE via designing a discriminative visual-text task.
arXiv Detail & Related papers (2024-07-04T15:22:54Z) - Information Guided Regularization for Fine-tuning Language Models [11.831883526217942]
We argue that a more surgical approach to regularization needs to exist for smoother transfer learning.
We devise a novel approach to dropout for improved model regularization and better downstream generalization.
arXiv Detail & Related papers (2024-06-20T05:18:37Z) - Hierarchical Decomposition of Prompt-Based Continual Learning:
Rethinking Obscured Sub-optimality [55.88910947643436]
Self-supervised pre-training is essential for handling vast quantities of unlabeled data in practice.
HiDe-Prompt is an innovative approach that explicitly optimize the hierarchical components with an ensemble of task-specific prompts and statistics.
Our experiments demonstrate the superior performance of HiDe-Prompt and its robustness to pre-training paradigms in continual learning.
arXiv Detail & Related papers (2023-10-11T06:51:46Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Lifelong Unsupervised Domain Adaptive Person Re-identification with
Coordinated Anti-forgetting and Adaptation [127.6168183074427]
We propose a new task, Lifelong Unsupervised Domain Adaptive (LUDA) person ReID.
This is challenging because it requires the model to continuously adapt to unlabeled data of the target environments.
We design an effective scheme for this task, dubbed CLUDA-ReID, where the anti-forgetting is harmoniously coordinated with the adaptation.
arXiv Detail & Related papers (2021-12-13T13:19:45Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.