Fully Fine-tuned CLIP Models are Efficient Few-Shot Learners
- URL: http://arxiv.org/abs/2407.04003v1
- Date: Thu, 4 Jul 2024 15:22:54 GMT
- Title: Fully Fine-tuned CLIP Models are Efficient Few-Shot Learners
- Authors: Mushui Liu, Bozheng Li, Yunlong Yu,
- Abstract summary: We explore capturing the task-specific information via meticulous refinement of entire Vision-Language Models (VLMs)
To mitigate these issues, we propose a framework named CLIP-CITE via designing a discriminative visual-text task.
- Score: 8.707819647492467
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Prompt tuning, which involves training a small set of parameters, effectively enhances the pre-trained Vision-Language Models (VLMs) to downstream tasks. However, they often come at the cost of flexibility and adaptability when the tuned models are applied to different datasets or domains. In this paper, we explore capturing the task-specific information via meticulous refinement of entire VLMs, with minimal parameter adjustments. When fine-tuning the entire VLMs for specific tasks under limited supervision, overfitting and catastrophic forgetting become the defacto factors. To mitigate these issues, we propose a framework named CLIP-CITE via designing a discriminative visual-text task, further aligning the visual-text semantics in a supervision manner, and integrating knowledge distillation techniques to preserve the gained knowledge. Extensive experimental results under few-shot learning, base-to-new generalization, domain generalization, and cross-domain generalization settings, demonstrate that our method effectively enhances the performance on specific tasks under limited supervision while preserving the versatility of the VLMs on other datasets.
Related papers
- Continual LLaVA: Continual Instruction Tuning in Large Vision-Language Models [93.5327725085853]
Continual LLaVA is a rehearsal-free method tailored for continual instruction tuning in LVLMs.
Experiments indicate that the proposed Continual LLaVA outperforms previous methods by significantly reducing the forgetting during the continual instruction tuning process.
arXiv Detail & Related papers (2024-11-04T19:55:32Z) - Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.
Our findings are synthesized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.
We demonstrate the effectiveness of this approach on quadrotor fly-to-target tasks, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
We investigate whether fine-tuning affects the intrinsic generalization ability intrinsic to Large Language Models (LLMs)
Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.
We observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model's generalization ability.
arXiv Detail & Related papers (2024-03-14T08:18:59Z) - Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning [13.964106147449051]
Existing solutions concentrate on fine-tuning the pre-trained models on conventional image datasets.
We propose a novel and effective framework based on learning Visual Prompts (VPT) in the pre-trained Vision Transformers (ViT)
We demonstrate that our new approximations with semantic information are superior to representative capabilities.
arXiv Detail & Related papers (2024-02-04T04:42:05Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z) - OFVL-MS: Once for Visual Localization across Multiple Indoor Scenes [11.619738651389424]
We propose a unified framework that dispenses with the traditional practice of training a model for each individual scene.
We show that OFVL-MS families significantly outperform the state-of-the-arts with fewer parameters.
We also verify that OFVL-MS can generalize to a new scene with much few parameters while gaining superior localization performance.
arXiv Detail & Related papers (2023-08-23T05:32:24Z) - Task Residual for Tuning Vision-Language Models [69.22958802711017]
We propose a new efficient tuning approach for vision-language models (VLMs) named Task Residual Tuning (TaskRes)
TaskRes explicitly decouples the prior knowledge of the pre-trained models and new knowledge regarding a target task.
The proposed TaskRes is simple yet effective, which significantly outperforms previous methods on 11 benchmark datasets.
arXiv Detail & Related papers (2022-11-18T15:09:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.