論文の概要: AppealNet: An Efficient and Highly-Accurate Edge/Cloud Collaborative
Architecture for DNN Inference
- arxiv url: http://arxiv.org/abs/2105.04104v1
- Date: Mon, 10 May 2021 04:13:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 23:58:01.153896
- Title: AppealNet: An Efficient and Highly-Accurate Edge/Cloud Collaborative
Architecture for DNN Inference
- Title(参考訳): appealNet: DNN推論のための効率的かつ高精度なエッジ/クラウドコラボレーションアーキテクチャ
- Authors: Min Li, Yu Li, Ye Tian, Li Jiang and Qiang Xu
- Abstract要約: AppealNetは、最先端のソリューションよりも効率的にディープラーニング(DL)タスクを実行する新しいエッジ/クラウド共同アーキテクチャです。
入力に対して appealnet は、リソース制約されたエッジデバイスにデプロイされたdlモデルによってうまく処理できるかどうかを正確に予測する。
- 参考スコア(独自算出の注目度): 16.847204351692632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents AppealNet, a novel edge/cloud collaborative architecture
that runs deep learning (DL) tasks more efficiently than state-of-the-art
solutions. For a given input, AppealNet accurately predicts on-the-fly whether
it can be successfully processed by the DL model deployed on the
resource-constrained edge device, and if not, appeals to the more powerful DL
model deployed at the cloud. This is achieved by employing a two-head neural
network architecture that explicitly takes inference difficulty into
consideration and optimizes the tradeoff between accuracy and
computation/communication cost of the edge/cloud collaborative architecture.
Experimental results on several image classification datasets show up to more
than 40% energy savings compared to existing techniques without sacrificing
accuracy.
- Abstract(参考訳): 本稿では,最先端ソリューションよりもディープラーニング(dl)タスクを効率的に実行する新しいエッジ/クラウド協調アーキテクチャである appealnet を提案する。
与えられた入力に対して、 appealnetは、リソース制約のあるエッジデバイスにデプロイされたdlモデルによってうまく処理できるかどうかを正確に予測し、そうでなければ、クラウドにデプロイされるより強力なdlモデルにアピールする。
これは、エッジ/クラウド協調アーキテクチャの精度と計算/通信コストのトレードオフを最適化し、推論の難しさを明示的に考慮した、双方向のニューラルネットワークアーキテクチャを採用することで実現される。
いくつかの画像分類データセットの実験結果は、既存の手法と比較して40%以上の省エネ効果が得られた。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - SpikeBottleNet: Spike-Driven Feature Compression Architecture for Edge-Cloud Co-Inference [0.86325068644655]
エッジクラウドコ推論システムのための新しいアーキテクチャであるSpikeBottleNetを提案する。
SpikeBottleNetはスパイクニューロンモデルを統合し、エッジデバイスのエネルギー消費を大幅に削減する。
論文 参考訳(メタデータ) (2024-10-11T09:59:21Z) - Dataset Quantization [72.61936019738076]
大規模データセットを小さなサブセットに圧縮する新しいフレームワークであるデータセット量子化(DQ)を提案する。
DQは、ImageNet-1kのような大規模データセットを最先端圧縮比で蒸留する最初の方法である。
論文 参考訳(メタデータ) (2023-08-21T07:24:29Z) - DVFO: Learning-Based DVFS for Energy-Efficient Edge-Cloud Collaborative
Inference [12.095934624748686]
本稿では,新しいDVFS対応エッジクラウド協調推論フレームワークであるDVFOを提案する。
エッジデバイスのCPU、GPU、メモリの周波数を自動的に最適化し、機能マップをクラウドサーバにオフロードする。
最先端の計画に比べて、エネルギー消費を平均で33%削減する。
論文 参考訳(メタデータ) (2023-06-02T07:00:42Z) - Neural Architecture Search for Improving Latency-Accuracy Trade-off in
Split Computing [5.516431145236317]
スプリットコンピューティングは、IoTシステムにディープラーニングをデプロイする際のプライバシとレイテンシの問題に対処する、新たな機械学習推論技術である。
スプリットコンピューティングでは、ニューラルネットワークモデルは、エッジサーバとIoTデバイスをネットワークを介して分離し、協調的に処理される。
本稿ではスプリットコンピューティングのためのニューラルアーキテクチャサーチ(NAS)手法を提案する。
論文 参考訳(メタデータ) (2022-08-30T03:15:43Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Latency-Memory Optimized Splitting of Convolution Neural Networks for
Resource Constrained Edge Devices [1.6873748786804317]
我々は、エッジデバイスとクラウド間でCNNを実行することは、リソース制約のある最適化問題を解決することと同義であると主張している。
実世界のエッジデバイスでの実験では、LMOSはエッジで異なるCNNモデルの実行可能な実行を保証する。
論文 参考訳(メタデータ) (2021-07-19T19:39:56Z) - Compact CNN Structure Learning by Knowledge Distillation [34.36242082055978]
知識蒸留とカスタマイズ可能なブロックワイズ最適化を活用し、軽量なCNN構造を学習するフレームワークを提案する。
提案手法は,予測精度の向上を図りながら,アートネットワーク圧縮の状態を再現する。
特に,すでにコンパクトなネットワークであるMobileNet_v2では,モデル圧縮が最大2倍,モデル圧縮が5.2倍向上する。
論文 参考訳(メタデータ) (2021-04-19T10:34:22Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
機械学習アルゴリズムは、人工知能(AI)モデルをトレーニングするために、ネットワークエッジにデプロイされる。
本稿では,パラメータ(計算負荷)割り当てと帯域幅割り当ての新しい共同設計に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-10T05:52:15Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
本稿では,高精度かつ高効率な人間のポーズ推定について述べる。
我々は、最先端技術よりも精度と効率を両立させる文脈において、この設計選択を再分析する。
本モデルでは,MPII と LSP のデータセットから最先端の結果が得られる。
論文 参考訳(メタデータ) (2020-02-25T18:51:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。