Age of Information Aware VNF Scheduling in Industrial IoT Using Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2105.04207v1
- Date: Mon, 10 May 2021 09:04:49 GMT
- Title: Age of Information Aware VNF Scheduling in Industrial IoT Using Deep
Reinforcement Learning
- Authors: Mohammad Akbari, Mohammad Reza Abedi, Roghayeh Joda, Mohsen
Pourghasemian, Nader Mokari, and Melike Erol-Kantarci
- Abstract summary: Deep reinforcement learning (DRL) has appeared as a viable way to solve such problems.
In this paper, we first utilize single agent low-complex compound action actor-critic RL to cover both discrete and continuous actions.
We then extend our solution to a multi-agent DRL scheme in which agents collaborate with each other.
- Score: 9.780232937571599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In delay-sensitive industrial internet of things (IIoT) applications, the age
of information (AoI) is employed to characterize the freshness of information.
Meanwhile, the emerging network function virtualization provides flexibility
and agility for service providers to deliver a given network service using a
sequence of virtual network functions (VNFs). However, suitable VNF placement
and scheduling in these schemes is NP-hard and finding a globally optimal
solution by traditional approaches is complex. Recently, deep reinforcement
learning (DRL) has appeared as a viable way to solve such problems. In this
paper, we first utilize single agent low-complex compound action actor-critic
RL to cover both discrete and continuous actions and jointly minimize VNF cost
and AoI in terms of network resources under end-to end Quality of Service
constraints. To surmount the single-agent capacity limitation for learning, we
then extend our solution to a multi-agent DRL scheme in which agents
collaborate with each other. Simulation results demonstrate that single-agent
schemes significantly outperform the greedy algorithm in terms of average
network cost and AoI. Moreover, multi-agent solution decreases the average cost
by dividing the tasks between the agents. However, it needs more iterations to
be learned due to the requirement on the agents collaboration.
Related papers
- Asynchronous Fractional Multi-Agent Deep Reinforcement Learning for Age-Minimal Mobile Edge Computing [14.260646140460187]
We study the timeliness of computational-intensive updates and explore jointly optimize the task updating and offloading policies to minimize AoI.
Specifically, we consider edge load dynamics and formulate a task scheduling problem to minimize the expected time-average AoI.
Our proposed algorithms reduce the average AoI by up to 52.6% compared with the best baseline algorithm in our experiments.
arXiv Detail & Related papers (2024-09-25T11:33:32Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Inter-Cell Network Slicing With Transfer Learning Empowered Multi-Agent
Deep Reinforcement Learning [6.523367518762879]
Network slicing enables operators to efficiently support diverse applications on a common physical infrastructure.
The ever-increasing densification of network deployment leads to complex and non-trivial inter-cell interference.
We develop a DIRP algorithm with multiple deep reinforcement learning (DRL) agents to cooperatively optimize resource partition in individual cells.
arXiv Detail & Related papers (2023-06-20T14:14:59Z) - RHFedMTL: Resource-Aware Hierarchical Federated Multi-Task Learning [11.329273673732217]
Federated learning is an effective way to enable AI over massive distributed nodes with security.
It is challenging to ensure the privacy while maintain a coupled multi-task learning across multiple base stations (BSs) and terminals.
In this paper, inspired by the natural cloud-BS-terminal hierarchy of cellular works, we provide a viable resource-aware hierarchical federated MTL (RHFedMTL) solution.
arXiv Detail & Related papers (2023-06-01T13:49:55Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Multi-Agent Reinforcement Learning for Long-Term Network Resource
Allocation through Auction: a V2X Application [7.326507804995567]
We formulate offloading of computational tasks from a dynamic group of mobile agents (e.g., cars) as decentralized decision making among autonomous agents.
We design an interaction mechanism that incentivizes such agents to align private and system goals by balancing between competition and cooperation.
We propose a novel multi-agent online learning algorithm that learns with partial, delayed and noisy state information.
arXiv Detail & Related papers (2022-07-29T10:29:06Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Contingency-Aware Influence Maximization: A Reinforcement Learning
Approach [52.109536198330126]
influence (IM) problem aims at finding a subset of seed nodes in a social network that maximize the spread of influence.
In this study, we focus on a sub-class of IM problems, where whether the nodes are willing to be the seeds when being invited is uncertain, called contingency-aware IM.
Despite the initial success, a major practical obstacle in promoting the solutions to more communities is the tremendous runtime of the greedy algorithms.
arXiv Detail & Related papers (2021-06-13T16:42:22Z) - Machine Learning for Performance-Aware Virtual Network Function
Placement [3.5558885788605323]
We develop a machine learning decision tree model that learns from the effective placement of the various Virtual Network Function instances forming a Service Function Chain (SFC)
The model takes several performance-related features from the network as an input and selects the placement of the various VNF instances on network servers with the objective of minimizing the delay between dependent VNF instances.
arXiv Detail & Related papers (2020-01-13T14:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.