Inter-Cell Network Slicing With Transfer Learning Empowered Multi-Agent
Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2306.11552v1
- Date: Tue, 20 Jun 2023 14:14:59 GMT
- Title: Inter-Cell Network Slicing With Transfer Learning Empowered Multi-Agent
Deep Reinforcement Learning
- Authors: Tianlun Hu, Qi Liao, Qiang Liu, and Georg Carle
- Abstract summary: Network slicing enables operators to efficiently support diverse applications on a common physical infrastructure.
The ever-increasing densification of network deployment leads to complex and non-trivial inter-cell interference.
We develop a DIRP algorithm with multiple deep reinforcement learning (DRL) agents to cooperatively optimize resource partition in individual cells.
- Score: 6.523367518762879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network slicing enables operators to efficiently support diverse applications
on a common physical infrastructure. The ever-increasing densification of
network deployment leads to complex and non-trivial inter-cell interference,
which requires more than inaccurate analytic models to dynamically optimize
resource management for network slices. In this paper, we develop a DIRP
algorithm with multiple deep reinforcement learning (DRL) agents to
cooperatively optimize resource partition in individual cells to fulfill the
requirements of each slice, based on two alternative reward functions.
Nevertheless, existing DRL approaches usually tie the pretrained model
parameters to specific network environments with poor transferability, which
raises practical deployment concerns in large-scale mobile networks. Hence, we
design a novel transfer learning-aided DIRP (TL-DIRP) algorithm to ease the
transfer of DIRP agents across different network environments in terms of
sample efficiency, model reproducibility, and algorithm scalability. The
TL-DIRP algorithm first centrally trains a generalized model and then transfers
the "generalist" to each local agent as "specialist" with distributed
finetuning and execution. TL-DIRP consists of two steps: 1) centralized
training of a generalized distributed model, 2) transferring the "generalist"
to each "specialist" with distributed finetuning and execution. The numerical
results show that not only DIRP outperforms existing baseline approaches in
terms of faster convergence and higher reward, but more importantly, TL-DIRP
significantly improves the service performance, with reduced exploration cost,
accelerated convergence rate, and enhanced model reproducibility. As compared
to a traffic-aware baseline, TL-DIRP provides about 15% less violation ratio of
the quality of service (QoS) for the worst slice service and 8.8% less
violation on the average service QoS.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - How Does Forecasting Affect the Convergence of DRL Techniques in O-RAN
Slicing? [20.344810727033327]
We propose a novel forecasting-aided DRL approach and its respective O-RAN practical deployment workflow to enhance DRL convergence.
Our approach shows up to 22.8%, 86.3%, and 300% improvements in the average initial reward value, convergence rate, and number of converged scenarios respectively.
arXiv Detail & Related papers (2023-09-01T14:30:04Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
Integrated Access and Backhauling (IRL) is a viable approach for meeting the unprecedented need for higher data rates of future generations.
In this paper, we show how we can use Deep Q-Learning Network to handle problems with huge action spaces associated with fractional nodes.
arXiv Detail & Related papers (2023-08-31T21:30:25Z) - Multi-Agent Reinforcement Learning for Network Routing in Integrated
Access Backhaul Networks [0.0]
We aim to maximize packet arrival ratio while minimizing their latency in IAB networks.
To solve this problem, we develop a multi-agent partially observed Markov decision process (POMD)
We show that A2C outperforms other reinforcement learning algorithms, leading to increased network efficiency and reduced selfish agent behavior.
arXiv Detail & Related papers (2023-05-12T13:03:26Z) - A Multi-objective Complex Network Pruning Framework Based on
Divide-and-conquer and Global Performance Impairment Ranking [40.59001171151929]
A multi-objective complex network pruning framework based on divide-and-conquer and global performance impairment ranking is proposed in this paper.
The proposed algorithm achieves a comparable performance with the state-of-the-art pruning methods.
arXiv Detail & Related papers (2023-03-28T12:05:15Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
The paper considers independent reinforcement learning (IRL) for collaborative decision-making in the paradigm of federated learning (FL)
FL generates excessive communication overheads between agents and a remote central server.
This paper proposes two advanced optimization schemes to improve the system's utility value.
arXiv Detail & Related papers (2021-03-24T07:21:43Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - ReActNet: Towards Precise Binary Neural Network with Generalized
Activation Functions [76.05981545084738]
We propose several ideas for enhancing a binary network to close its accuracy gap from real-valued networks without incurring any additional computational cost.
We first construct a baseline network by modifying and binarizing a compact real-valued network with parameter-free shortcuts.
We show that the proposed ReActNet outperforms all the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2020-03-07T02:12:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.