Primitive Representation Learning for Scene Text Recognition
- URL: http://arxiv.org/abs/2105.04286v1
- Date: Mon, 10 May 2021 11:54:49 GMT
- Title: Primitive Representation Learning for Scene Text Recognition
- Authors: Ruijie Yan, Liangrui Peng, Shanyu Xiao, Gang Yao
- Abstract summary: We propose a primitive representation learning method that aims to exploit intrinsic representations of scene text images.
A Primitive REpresentation learning Network (PREN) is constructed to use the visual text representations for parallel decoding.
We also propose a framework called PREN2D to alleviate the misalignment problem in attention-based methods.
- Score: 7.818765015637802
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Scene text recognition is a challenging task due to diverse variations of
text instances in natural scene images. Conventional methods based on
CNN-RNN-CTC or encoder-decoder with attention mechanism may not fully
investigate stable and efficient feature representations for multi-oriented
scene texts. In this paper, we propose a primitive representation learning
method that aims to exploit intrinsic representations of scene text images. We
model elements in feature maps as the nodes of an undirected graph. A pooling
aggregator and a weighted aggregator are proposed to learn primitive
representations, which are transformed into high-level visual text
representations by graph convolutional networks. A Primitive REpresentation
learning Network (PREN) is constructed to use the visual text representations
for parallel decoding. Furthermore, by integrating visual text representations
into an encoder-decoder model with the 2D attention mechanism, we propose a
framework called PREN2D to alleviate the misalignment problem in
attention-based methods. Experimental results on both English and Chinese scene
text recognition tasks demonstrate that PREN keeps a balance between accuracy
and efficiency, while PREN2D achieves state-of-the-art performance.
Related papers
- Decoder Pre-Training with only Text for Scene Text Recognition [54.93037783663204]
Scene text recognition (STR) pre-training methods have achieved remarkable progress, primarily relying on synthetic datasets.
We introduce a novel method named Decoder Pre-training with only text for STR (DPTR)
DPTR treats text embeddings produced by the CLIP text encoder as pseudo visual embeddings and uses them to pre-train the decoder.
arXiv Detail & Related papers (2024-08-11T06:36:42Z) - Synchronizing Vision and Language: Bidirectional Token-Masking
AutoEncoder for Referring Image Segmentation [26.262887028563163]
Referring Image (RIS) aims to segment target objects expressed in natural language within a scene at the pixel level.
We propose a novel bidirectional token-masking autoencoder (BTMAE) inspired by the masked autoencoder (MAE)
BTMAE learns the context of image-to-language and language-to-image by reconstructing missing features in both image and language features at the token level.
arXiv Detail & Related papers (2023-11-29T07:33:38Z) - MaskOCR: Text Recognition with Masked Encoder-Decoder Pretraining [68.05105411320842]
We propose a novel approach MaskOCR to unify vision and language pre-training in the classical encoder-decoder recognition framework.
We adopt the masked image modeling approach to pre-train the feature encoder using a large set of unlabeled real text images.
We transform text data into synthesized text images to unify the data modalities of vision and language, and enhance the language modeling capability of the sequence decoder.
arXiv Detail & Related papers (2022-06-01T08:27:19Z) - Vision-Language Pre-Training for Boosting Scene Text Detectors [57.08046351495244]
We specifically adapt vision-language joint learning for scene text detection.
We propose to learn contextualized, joint representations through vision-language pre-training.
The pre-trained model is able to produce more informative representations with richer semantics.
arXiv Detail & Related papers (2022-04-29T03:53:54Z) - Language Matters: A Weakly Supervised Pre-training Approach for Scene
Text Detection and Spotting [69.77701325270047]
This paper presents a weakly supervised pre-training method that can acquire effective scene text representations.
Our network consists of an image encoder and a character-aware text encoder that extract visual and textual features.
Experiments show that our pre-trained model improves F-score by +2.5% and +4.8% while transferring its weights to other text detection and spotting networks.
arXiv Detail & Related papers (2022-03-08T08:10:45Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Text to Image Generation with Semantic-Spatial Aware GAN [41.73685713621705]
A text to image generation (T2I) model aims to generate photo-realistic images which are semantically consistent with the text descriptions.
We propose a novel framework Semantic-Spatial Aware GAN, which is trained in an end-to-end fashion so that the text encoder can exploit better text information.
arXiv Detail & Related papers (2021-04-01T15:48:01Z) - Scene Text Synthesis for Efficient and Effective Deep Network Training [62.631176120557136]
We develop an innovative image synthesis technique that composes annotated training images by embedding foreground objects of interest into background images.
The proposed technique consists of two key components that in principle boost the usefulness of the synthesized images in deep network training.
Experiments over a number of public datasets demonstrate the effectiveness of our proposed image synthesis technique.
arXiv Detail & Related papers (2019-01-26T10:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.