論文の概要: Video Anomaly Detection By The Duality Of Normality-Granted Optical Flow
- arxiv url: http://arxiv.org/abs/2105.04302v1
- Date: Mon, 10 May 2021 12:25:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 14:50:45.516106
- Title: Video Anomaly Detection By The Duality Of Normality-Granted Optical Flow
- Title(参考訳): 正規性付与光流の双対性による映像異常検出
- Authors: Hongyong Wang, Xinjian Zhang, Su Yang, Weishan Zhang
- Abstract要約: 正規性付与光流の双対性によって異常を正常なものと区別する。
出現運動対応方式をフレーム再構成から予測まで拡張する。
- 参考スコア(独自算出の注目度): 1.8065361710947974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video anomaly detection is a challenging task because of diverse abnormal
events. To this task, methods based on reconstruction and prediction are wildly
used in recent works, which are built on the assumption that learning on normal
data, anomalies cannot be reconstructed or predicated as good as normal
patterns, namely the anomaly result with more errors. In this paper, we propose
to discriminate anomalies from normal ones by the duality of normality-granted
optical flow, which is conducive to predict normal frames but adverse to
abnormal frames. The normality-granted optical flow is predicted from a single
frame, to keep the motion knowledge focused on normal patterns. Meanwhile, We
extend the appearance-motion correspondence scheme from frame reconstruction to
prediction, which not only helps to learn the knowledge about object
appearances and correlated motion, but also meets the fact that motion is the
transformation between appearances. We also introduce a margin loss to enhance
the learning of frame prediction. Experiments on standard benchmark datasets
demonstrate the impressive performance of our approach.
- Abstract(参考訳): ビデオ異常検出は多様な異常事象のために難しい課題である。
本課題は, 正規データに基づく学習において, 異常を通常のパターン, すなわち, エラーの少ない異常を再現・予測できないという仮定に基づいて, 再構成と予測に基づく手法が近年, 盛んに行われていることである。
本稿では,通常のフレームを予測できるが,異常フレームに悪影響を及ぼす光学的流れの双対性により,通常のフレームと異常を識別する手法を提案する。
通常のパターンに着目した動きの知識を維持するため、通常の光フローは単一のフレームから予測される。
一方,物体の出現や相関運動に関する知識を学習するだけでなく,運動が出現間の変換であるという事実を満たすために,フレーム再構成から予測まで,出現-運動対応方式を拡張した。
また,フレーム予測の学習を促進するためにマージン損失を導入する。
標準ベンチマークデータセットの実験は、我々のアプローチの素晴らしいパフォーマンスを示しています。
関連論文リスト
- Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Updated version: A Video Anomaly Detection Framework based on
Appearance-Motion Semantics Representation Consistency [2.395616571632115]
本稿では,出現動作のセマンティックス一貫性表現の枠組みを提案する。
この2ストリーム構造は、通常のサンプルの外観および動き情報表現を符号化するように設計されている。
特徴セマンティクスの整合性を高めるために、一貫性の低い異常を識別できるように、新しい整合性損失を提案する。
論文 参考訳(メタデータ) (2023-03-09T08:28:34Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
ビデオの異常検出は重要な問題だが、難しい問題だ。
既存の再構成に基づく手法は、昔ながらの畳み込みオートエンコーダに依存している。
連続フレーム再構築のための新しいオートエンコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-28T01:57:57Z) - Spatio-temporal predictive tasks for abnormal event detection in videos [60.02503434201552]
オブジェクトレベルの正規化パターンを学習するための制約付きプレテキストタスクを提案する。
我々のアプローチは、ダウンスケールの視覚的クエリとそれに対応する正常な外観と運動特性のマッピングを学習することである。
いくつかのベンチマークデータセットの実験では、異常の局所化と追跡のためのアプローチの有効性が示されている。
論文 参考訳(メタデータ) (2022-10-27T19:45:12Z) - A Video Anomaly Detection Framework based on Appearance-Motion Semantics
Representation Consistency [18.06814233420315]
本稿では,正常データの外観と動作意味表現の整合性を利用して異常検出を行うフレームワークを提案する。
通常のサンプルの外観および動作情報表現を符号化する2ストリームエンコーダを設計する。
異常サンプルの外観と運動特性の低い一貫性は、より大きな再構成誤差で予測されたフレームを生成するために使用できる。
論文 参考訳(メタデータ) (2022-04-08T15:59:57Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - FastAno: Fast Anomaly Detection via Spatio-temporal Patch Transformation [6.112591965159383]
本研究では,空間回転変換 (SRT) と時間混合変換 (TMT) を提案し,通常のフレームキューブ内で不規則なパッチキューブを生成する。
提案手法は,3つの異常検出ベンチマークで評価され,競争精度が向上し,それまでのすべての作業を速度的に上回っている。
論文 参考訳(メタデータ) (2021-06-16T08:14:31Z) - Unsupervised Video Anomaly Detection via Normalizing Flows with Implicit
Latent Features [8.407188666535506]
既存のほとんどのメソッドはオートエンコーダを使用して、通常のビデオの再構築を学ぶ。
本稿では2つのエンコーダが暗黙的に外観と動きの特徴をモデル化する構造である暗黙の2経路AE(ITAE)を提案する。
通常のシーンの複雑な分布については,ITAE特徴量の正規密度推定を提案する。
NFモデルは暗黙的に学習された機能を通じて正常性を学ぶことでITAEのパフォーマンスを高める。
論文 参考訳(メタデータ) (2020-10-15T05:02:02Z) - Learning Memory-guided Normality for Anomaly Detection [33.77435699029528]
本稿では,異常検出に対する教師なし学習手法を提案する。
また,メモリをトレーニングするための特徴量と分離性損失を新たに提示し,メモリアイテムの識別能力と通常のデータからの深い学習能力を高める。
論文 参考訳(メタデータ) (2020-03-30T05:30:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。