Predicting Intensive Care Unit Length of Stay and Mortality Using
Patient Vital Signs: Machine Learning Model Development and Validation
- URL: http://arxiv.org/abs/2105.04414v1
- Date: Wed, 5 May 2021 18:45:26 GMT
- Title: Predicting Intensive Care Unit Length of Stay and Mortality Using
Patient Vital Signs: Machine Learning Model Development and Validation
- Authors: Khalid Alghatani, Nariman Ammar, Abdelmounaam Rezgui, Arash
Shaban-Nejad
- Abstract summary: The models will be used in an intelligent ICU patient monitoring module of an Intelligent Remote Patient Monitoring framework.
We used the publicly available Medical Information Mart for Intensive Care (MIMIC) database to extract ICU stay data for adult patients.
For the mortality model, we applied six ML algorithms for predicting the discharge status (survived or not)
For the length of stay model, we applied the same six ML algorithms for binary classification using the median patient population ICU stay of 2.64 days.
- Score: 0.22940141855172028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Patient monitoring is vital in all stages of care. We here report the
development and validation of ICU length of stay and mortality prediction
models. The models will be used in an intelligent ICU patient monitoring module
of an Intelligent Remote Patient Monitoring (IRPM) framework that monitors the
health status of patients, and generates timely alerts, maneuver guidance, or
reports when adverse medical conditions are predicted. We utilized the publicly
available Medical Information Mart for Intensive Care (MIMIC) database to
extract ICU stay data for adult patients to build two prediction models: one
for mortality prediction and another for ICU length of stay. For the mortality
model, we applied six commonly used machine learning (ML) binary classification
algorithms for predicting the discharge status (survived or not). For the
length of stay model, we applied the same six ML algorithms for binary
classification using the median patient population ICU stay of 2.64 days. For
the regression-based classification, we used two ML algorithms for predicting
the number of days. We built two variations of each prediction model: one using
12 baseline demographic and vital sign features, and the other based on our
proposed quantiles approach, in which we use 21 extra features engineered from
the baseline vital sign features, including their modified means, standard
deviations, and quantile percentages. We could perform predictive modeling with
minimal features while maintaining reasonable performance using the quantiles
approach. The best accuracy achieved in the mortality model was approximately
89% using the random forest algorithm. The highest accuracy achieved in the
length of stay model, based on the population median ICU stay (2.64 days), was
approximately 65% using the random forest algorithm.
Related papers
- A multi-cohort study on prediction of acute brain dysfunction states
using selective state space models [12.0129301272171]
acute brain dysfunction (ABD) is a critical challenge due to its prevalence and severe implications for patient outcomes.
Our research attempts to solve these problems by harnessing Electronic Health Records (EHR) data.
Existing models solely predict a single state (e.g., either delirium or coma) require at least 24 hours of observation data to make predictions.
Our research fills these gaps in the existing literature by dynamically predicting delirium, coma, mortality and fluctuating for 12-hour intervals throughout an ICU stay.
arXiv Detail & Related papers (2024-03-11T22:58:11Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - MedLens: Improve Mortality Prediction Via Medical Signs Selecting and
Regression [4.43322868663347]
Data-quality problem of original clinical signs is less discussed in the literature.
We designed MEDLENS, with an automatic vital medical signs selection approach via statistics and a flexible approach for high missing rate time series.
It achieves a very high accuracy performance of 0.96 AUC-ROC and 0.81 AUC-PR, which exceeds the previous benchmark.
arXiv Detail & Related papers (2023-05-19T15:28:02Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Multi-task fusion for improving mammography screening data
classification [3.7683182861690843]
We propose a pipeline approach, where we first train a set of individual, task-specific models.
We then investigate the fusion thereof, which is in contrast to the standard model ensembling strategy.
Our fusion approaches improve AUC scores significantly by up to 0.04 compared to standard model ensembling.
arXiv Detail & Related papers (2021-12-01T13:56:27Z) - EventScore: An Automated Real-time Early Warning Score for Clinical
Events [3.3039612529376625]
We build an interpretable model for the early prediction of various adverse clinical events indicative of clinical deterioration.
The model is evaluated on two datasets and four clinical events.
Our model can be entirely automated without requiring any manually recorded features.
arXiv Detail & Related papers (2021-02-11T11:55:08Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.