論文の概要: Deeply-Debiased Off-Policy Interval Estimation
- arxiv url: http://arxiv.org/abs/2105.04646v1
- Date: Mon, 10 May 2021 20:00:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 14:10:25.661224
- Title: Deeply-Debiased Off-Policy Interval Estimation
- Title(参考訳): 極端に偏ったオフ・ポリティ・インターバル推定
- Authors: Chengchun Shi and Runzhe Wan and Victor Chernozhukov and Rui Song
- Abstract要約: オフ政治評価は、異なる行動ポリシーによって生成された過去のデータセットでターゲットポリシーの価値を学習する。
多くのアプリケーションは、ポイント推定の不確実性を定量化する信頼区間(CI)を持つことで大きな利益を得るでしょう。
ターゲットポリシーの価値に効率的で堅牢で柔軟なCIを構築するための新しい手順を提案します。
- 参考スコア(独自算出の注目度): 11.683223078990325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Off-policy evaluation learns a target policy's value with a historical
dataset generated by a different behavior policy. In addition to a point
estimate, many applications would benefit significantly from having a
confidence interval (CI) that quantifies the uncertainty of the point estimate.
In this paper, we propose a novel procedure to construct an efficient, robust,
and flexible CI on a target policy's value. Our method is justified by
theoretical results and numerical experiments. A Python implementation of the
proposed procedure is available at https://github.com/RunzheStat/D2OPE.
- Abstract(参考訳): オフ政治評価は、異なる行動ポリシーによって生成された過去のデータセットでターゲットポリシーの価値を学習する。
点推定に加えて、多くのアプリケーションは点推定の不確かさを定量化する信頼区間(CI)を持つことで大きな恩恵を受けるだろう。
本稿では,目標政策の価値に基づいて,効率的で堅牢で柔軟なCIを構築するための新しい手法を提案する。
本手法は理論的結果と数値実験によって正当化される。
提案されたプロシージャのPython実装はhttps://github.com/RunzheStat/D2OPEで公開されている。
関連論文リスト
- $Δ\text{-}{\rm OPE}$: Off-Policy Estimation with Pairs of Policies [13.528097424046823]
Inverse Propensity Scoring estimator に基づいた$Deltatext-rm OPE$メソッドを提案する。
シミュレーション,オフライン,オンライン実験により,本手法は評価タスクと学習タスクの両方のパフォーマンスを著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-05-16T12:04:55Z) - Policy Gradient with Active Importance Sampling [55.112959067035916]
政策勾配法(PG法)はISの利点を大いに生かし、以前に収集したサンプルを効果的に再利用することができる。
しかし、ISは歴史的サンプルを再重み付けするための受動的ツールとしてRLに採用されている。
我々は、政策勾配のばらつきを減らすために、サンプルを収集する最良の行動ポリシーを模索する。
論文 参考訳(メタデータ) (2024-05-09T09:08:09Z) - Conformal Off-Policy Evaluation in Markov Decision Processes [53.786439742572995]
強化学習は、データから効率的な制御ポリシーを特定し評価することを目的としている。
この学習タスクのほとんどの方法は、Off-Policy Evaluation (OPE)と呼ばれ、正確さと確実性を保証するものではない。
本稿では,目標方針の真報を含む区間を所定の確信度で出力するコンフォーマル予測に基づく新しいOPE手法を提案する。
論文 参考訳(メタデータ) (2023-04-05T16:45:11Z) - Quantile Off-Policy Evaluation via Deep Conditional Generative Learning [21.448553360543478]
Off-Policy Evaluation (OPE) は、潜在的に異なる行動ポリシーによって生成されたオフラインデータを用いて、新しいターゲットポリシーを評価することに関心がある。
本稿では、逐次決定における量子OPEの2倍のロス率推論手順を提案する。
本提案手法の利点は,シミュレーションと,ショートビデオプラットフォームによる実世界のデータセットの両方を用いて示す。
論文 参考訳(メタデータ) (2022-12-29T22:01:43Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
線形関数近似を用いた強化学習における非政治的評価問題について検討する。
本稿では,値関数の分散を推定し,フィルタQ-Iterationにおけるベルマン残差を再重み付けするアルゴリズムVA-OPEを提案する。
論文 参考訳(メタデータ) (2021-06-22T17:58:46Z) - Off-Policy Evaluation of Bandit Algorithm from Dependent Samples under
Batch Update Policy [8.807587076209566]
オフ・ポリティクス評価(OPE)の目的は、行動政策を通じて得られた履歴データを用いて、新しい政策を評価することである。
文脈的帯域幅は過去の観測に基づいてポリシーを更新するため、サンプルは独立ではなく、同一に分布する。
本稿では,従属サンプルに対するマーチンゲール差分列(MDS)から推定器を構築することにより,この問題に対処する。
論文 参考訳(メタデータ) (2020-10-23T15:22:57Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
強化学習における高信頼行動非依存のオフ政治評価について検討する。
様々なベンチマークにおいて、信頼区間推定が既存の手法よりも厳密で精度が高いことが示されている。
論文 参考訳(メタデータ) (2020-10-22T12:39:11Z) - Doubly Robust Off-Policy Value and Gradient Estimation for Deterministic
Policies [80.42316902296832]
本研究では,行動継続時の非政治データから決定論的政策の政策値と勾配を推定する。
この設定では、密度比が存在しないため、標準重要度サンプリングとポリシー値と勾配の2倍の頑健な推定が失敗する。
異なるカーネル化アプローチに基づく2つの新しい頑健な推定器を提案する。
論文 参考訳(メタデータ) (2020-06-06T15:52:05Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
本稿では,関数近似を用いたバッチデータ強化学習の統計的理論について検討する。
記録履歴から新たな対象政策の累積値を推定するオフ・ポリティクス評価問題を考察する。
論文 参考訳(メタデータ) (2020-02-21T19:20:57Z) - Statistical Inference of the Value Function for Reinforcement Learning
in Infinite Horizon Settings [0.0]
我々は、決定ポイントの数が無限大に分散する無限の地平線設定において、ポリシーの値に対する信頼区間(CI)を構築する。
最適方針が一意でない場合でも,提案したCIが名目上のカバレッジを達成することを示す。
提案手法をモバイル健康研究のデータセットに適用し, 強化学習アルゴリズムが患者の健康状態を改善するのに役立つことを確かめた。
論文 参考訳(メタデータ) (2020-01-13T19:42:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。