論文の概要: Sample selection for efficient image annotation
- arxiv url: http://arxiv.org/abs/2105.04678v1
- Date: Mon, 10 May 2021 21:25:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-13 05:26:19.871447
- Title: Sample selection for efficient image annotation
- Title(参考訳): 効率的な画像アノテーションのためのサンプル選択
- Authors: Bishwo Adhikari, Esa Rahtu, Heikki Huttunen
- Abstract要約: 監視対象検出は、人間レベルのパフォーマンスを達成する多くのベンチマークデータセットで成功したことが証明されている。
ラベルなしデータセットから最も有益な画像をサンプリングする効率的な画像選択手法を提案する。
本手法は,完全な手動ラベリング設定と比較して,手動アノテーション作業の最大80%を削減でき,ランダムサンプリングよりも優れた性能を発揮する。
- 参考スコア(独自算出の注目度): 14.695979686066066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supervised object detection has been proven to be successful in many
benchmark datasets achieving human-level performances. However, acquiring a
large amount of labeled image samples for supervised detection training is
tedious, time-consuming, and costly. In this paper, we propose an efficient
image selection approach that samples the most informative images from the
unlabeled dataset and utilizes human-machine collaboration in an iterative
train-annotate loop. Image features are extracted by the CNN network followed
by the similarity score calculation, Euclidean distance. Unlabeled images are
then sampled into different approaches based on the similarity score. The
proposed approach is straightforward, simple and sampling takes place prior to
the network training. Experiments on datasets show that our method can reduce
up to 80% of manual annotation workload, compared to full manual labeling
setting, and performs better than random sampling.
- Abstract(参考訳): 監視対象検出は、人間レベルのパフォーマンスを達成する多くのベンチマークデータセットで成功したことが証明されている。
しかし、教師付き検出訓練のための大量のラベル付き画像サンプルを取得するのは面倒で、時間もかかり、コストもかかる。
本稿では,ラベルのないデータセットから最も有益な画像を抽出し,反復的なトレインアノテートループで人間と機械の協調を利用する効率的な画像選択手法を提案する。
CNNネットワークで画像の特徴を抽出し、類似度スコア計算、ユークリッド距離を求める。
ラベルのない画像は、類似度スコアに基づいて異なるアプローチにサンプリングされる。
提案手法は単純で単純で,サンプリングはネットワークトレーニング前に行われる。
データセットを用いた実験により,本手法は,完全な手動ラベリング設定と比較して,手作業の最大80%を削減でき,ランダムサンプリングよりも優れた性能を示す。
関連論文リスト
- Pre-Trained Vision-Language Models as Partial Annotators [40.89255396643592]
事前学習された視覚言語モデルは、画像と自然言語の統一表現をモデル化するために大量のデータを学習する。
本稿では,事前学習型モデルアプリケーションのための「事前学習型-弱教師付き学習」パラダイムについて検討し,画像分類タスクの実験を行う。
論文 参考訳(メタデータ) (2024-05-23T17:17:27Z) - DREAM+: Efficient Dataset Distillation by Bidirectional Representative
Matching [40.18223537419178]
本稿では,DREAM+と呼ばれる新しいデータセットマッチング手法を提案する。
DREAM+は、蒸留の繰り返し回数を15回以上減らし、性能に影響を与えない。
十分なトレーニング時間があれば、DREAM+はパフォーマンスをさらに向上し、最先端の結果を得ることができる。
論文 参考訳(メタデータ) (2023-10-23T15:55:30Z) - A Semi-Paired Approach For Label-to-Image Translation [6.888253564585197]
ラベル・ツー・イメージ翻訳のための半教師付き(半ペア)フレームワークを初めて紹介する。
半ペア画像設定では、小さなペアデータとより大きなペア画像とラベルのセットにアクセスすることができる。
本稿では,この共有ネットワークのためのトレーニングアルゴリズムを提案し,非表現型クラスに着目した希少なクラスサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-23T16:13:43Z) - Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
本稿では、画像キャプションモデルの一般化を改善するための、新しいデータ効率半教師付きフレームワークを提案する。
提案手法は,キャプタにペアデータから学習し,段階的に未ペアデータの関連付けを行うよう訓練する。
1)画像ベースと(2)高密度領域ベースキャプションデータセットの両方を総合的かつ包括的な実験結果とし,それに続いて,少ないペアリングデータセットの包括的分析を行った。
論文 参考訳(メタデータ) (2023-01-26T15:25:43Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
本稿では,事前学習したGANを用いて,高品質な画像を生成することで,半教師付き部分分割タスクに対処することに焦点を当てる。
特に、アノテータ学習を学習から学習までの問題として定式化する。
提案手法は,実画像,生成された画像,さらには解析的に描画された画像を含む,幅広いラベル付き画像からアノテータを学習可能であることを示す。
論文 参考訳(メタデータ) (2022-11-06T01:29:22Z) - CropMix: Sampling a Rich Input Distribution via Multi-Scale Cropping [97.05377757299672]
そこで本研究では,元のデータセット分布からリッチな入力分布を生成するための簡単なCropMixを提案する。
CropMixは、分類タスクを実行するトレーニングレシピやニューラルネットワークアーキテクチャにシームレスに適用することができる。
CropMixは、より強力な表現に向けて、対照的な学習とマスクされた画像モデリングの両方に利益があることを示す。
論文 参考訳(メタデータ) (2022-05-31T16:57:28Z) - Active Learning for Deep Visual Tracking [51.5063680734122]
畳み込みニューラルネットワーク(CNN)は近年,単一目標追跡タスクに成功している。
本稿では,ディープ・ビジュアル・トラッキングのためのアクティブ・ラーニング手法を提案する。
アクティブラーニングの指導のもと、トレーニングされた深層CNNモデルに基づくトラッカーは、ラベリングコストを低減しつつ、競合的なトラッキング性能を達成することができる。
論文 参考訳(メタデータ) (2021-10-17T11:47:56Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
多数の画像の分類ラベルを収集するための効率的なアノテーション戦略を検討する。
人間のラベリング作業を最小化するための修正とベストプラクティスを提案します。
ImageNet100の125kイメージサブセットのシミュレーション実験では、平均で0.35のアノテーションで80%のトップ-1の精度でアノテートできることが示されている。
論文 参考訳(メタデータ) (2021-04-26T16:29:32Z) - Transform consistency for learning with noisy labels [9.029861710944704]
単一のネットワークのみを用いてクリーンサンプルを同定する手法を提案する。
きれいなサンプルは元のイメージおよび変形したイメージのための一貫した予測に達することを好みます。
ノイズラベルの負の影響を軽減するために,オフラインのハードラベルとオンラインのソフトラベルを用いて分類損失を設計する。
論文 参考訳(メタデータ) (2021-03-25T14:33:13Z) - CSI: Novelty Detection via Contrastive Learning on Distributionally
Shifted Instances [77.28192419848901]
コントラストシフトインスタンス (CSI) という,単純かつ効果的な手法を提案する。
従来のコントラスト学習法のように,サンプルを他の例と対比することに加えて,本トレーニング手法では,サンプルを分散シフトによる拡張と対比する。
本実験は, 種々の新規検出シナリオにおける本手法の優位性を実証する。
論文 参考訳(メタデータ) (2020-07-16T08:32:56Z) - Enhancing Few-Shot Image Classification with Unlabelled Examples [18.03136114355549]
画像分類性能を向上させるために,非ラベルインスタンスを用いたトランスダクティブなメタラーニング手法を開発した。
提案手法は,正規化ニューラルアダプティブ特徴抽出器を組み合わせることで,非ラベルデータを用いたテスト時間分類精度の向上を実現する。
論文 参考訳(メタデータ) (2020-06-17T05:42:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。