論文の概要: Spectral risk-based learning using unbounded losses
- arxiv url: http://arxiv.org/abs/2105.04816v1
- Date: Tue, 11 May 2021 07:08:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 14:06:10.272118
- Title: Spectral risk-based learning using unbounded losses
- Title(参考訳): unbounded lossを用いたスペクトルリスクに基づく学習
- Authors: Matthew J. Holland, El Mehdi Haress
- Abstract要約: リプシッツ連続スペクトル密度を使用して、極端な損失値に柔軟に重みを割り当てるスペクトルリスク関数の広いクラスの下で学習問題の設定を検討します。
我々は,unbounded heavy-tailed loss distributions下でのデリバティブフリー学習手順に対する過剰なリスク保証を得る。
- 参考スコア(独自算出の注目度): 5.844015313757266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we consider the setting of learning problems under a wide class
of spectral risk (or "L-risk") functions, where a Lipschitz-continuous spectral
density is used to flexibly assign weight to extreme loss values. We obtain
excess risk guarantees for a derivative-free learning procedure under unbounded
heavy-tailed loss distributions, and propose a computationally efficient
implementation which empirically outperforms traditional risk minimizers in
terms of balancing spectral risk and misclassification error.
- Abstract(参考訳): 本研究では,スペクトルリスク (l-risk) 関数の幅広いクラスにおいて,リプシッツ連続スペクトル密度を用いて最大損失値に柔軟に重みを割り当てる学習問題の設定を考える。
非有界重み付き損失分布下での微分自由学習手法の過剰なリスク保証を求め、スペクトルリスクと誤分類誤差のバランスで従来のリスク最小化器を実証的に上回る計算効率の良い実装を提案する。
関連論文リスト
- LEARN: An Invex Loss for Outlier Oblivious Robust Online Optimization [56.67706781191521]
敵は、学習者に未知の任意の数kの損失関数を破損させることで、外れ値を導入することができる。
我々は,任意の数kで損失関数を破損させることで,敵が外乱を発生させることができる,頑健なオンラインラウンド最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-12T17:08:31Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
しきい値とトレードオフパラメータが適応的に選択された場合、リスクの有効な制御を可能にする手法を開発する。
提案手法は単調なリスクとほぼ単調なリスクをサポートするが,それ以外は分布的な仮定はしない。
論文 参考訳(メタデータ) (2024-03-28T17:28:06Z) - A Generalized Unbiased Risk Estimator for Learning with Augmented
Classes [70.20752731393938]
ラベルなしのデータが与えられた場合、非バイアスリスク推定器(URE)が導出され、理論的保証のあるLACでは最小限にすることができる。
理論的な保証を維持しつつ任意の損失関数を装備できる一般化されたUREを提案する。
論文 参考訳(メタデータ) (2023-06-12T06:52:04Z) - Regret Bounds for Risk-sensitive Reinforcement Learning with Lipschitz
Dynamic Risk Measures [23.46659319363579]
EmphLipschitz動的リスク尺度に適用した2つのモデルベースアルゴリズムを提案する。
特に、私たちの上限は、アクションの数とエピソード数に最適な依存を示す。
論文 参考訳(メタデータ) (2023-06-04T16:24:19Z) - Risk Perspective Exploration in Distributional Reinforcement Learning [10.441880303257468]
リスクレベルでのリスクレベルと楽観的な振る舞いを探索するリスクスケジューリング手法を提案する。
マルチエージェント環境でのリスクスケジューリングを用いたDMIXアルゴリズムの性能向上を示す。
論文 参考訳(メタデータ) (2022-06-28T17:37:34Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
リスク逆強化学習(RL)では、リターンのリスク測定を最適化することが目標である。
特定の条件下では、これは必然的に局所最適障壁につながることを証明し、それを回避するためのソフトリスク機構を提案する。
迷路ナビゲーション,自律運転,資源配分ベンチマークにおいて,リスク回避の改善を示す。
論文 参考訳(メタデータ) (2022-05-10T19:40:52Z) - SENTINEL: Taming Uncertainty with Ensemble-based Distributional
Reinforcement Learning [6.587644069410234]
モデルベース強化学習(RL)におけるリスク依存型シーケンシャル意思決定の検討
リスクの新たな定量化、すなわちEmphcomposite riskを導入する。
我々は、SENTINEL-Kが戻り分布をよりよく推定し、複合リスク推定と併用しながら、競合するRLアルゴリズムよりもリスクに敏感な性能を示すことを実験的に検証した。
論文 参考訳(メタデータ) (2021-02-22T14:45:39Z) - A Full Characterization of Excess Risk via Empirical Risk Landscape [8.797852602680445]
本稿では,滑らかな凸関数と非損失関数の両方を持つ固有アルゴリズムにより訓練されたモデルのリスクを統一的に解析する。
論文 参考訳(メタデータ) (2020-12-04T08:24:50Z) - Learning with risks based on M-location [6.903929927172917]
損失分布の位置と偏差から定義されるリスクの新たなクラスについて検討する。
クラスはスムーズな損失を取り巻くラッパーとして容易に実装されます。
論文 参考訳(メタデータ) (2020-12-04T06:21:51Z) - Risk-Constrained Thompson Sampling for CVaR Bandits [82.47796318548306]
CVaR(Conditional Value at Risk)として知られる量的ファイナンスにおける一般的なリスク尺度について考察する。
本稿では,トンプソンサンプリングに基づくCVaR-TSアルゴリズムの性能について検討する。
論文 参考訳(メタデータ) (2020-11-16T15:53:22Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
リスクに敏感な学習では、損失のリスク・アバース(またはリスク・シーキング)を最小化する仮説を見つけることを目的としている。
最適化された確実性等価性によって最適性を記述するリスク感応学習スキームの一般化特性について検討する。
論文 参考訳(メタデータ) (2020-06-15T05:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。