論文の概要: Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction
- arxiv url: http://arxiv.org/abs/2403.19605v1
- Date: Thu, 28 Mar 2024 17:28:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 15:14:42.409032
- Title: Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction
- Title(参考訳): 分布自由予測における複数リスク間のデータ適応的トレードオフ
- Authors: Drew T. Nguyen, Reese Pathak, Anastasios N. Angelopoulos, Stephen Bates, Michael I. Jordan,
- Abstract要約: しきい値とトレードオフパラメータが適応的に選択された場合、リスクの有効な制御を可能にする手法を開発する。
提案手法は単調なリスクとほぼ単調なリスクをサポートするが,それ以外は分布的な仮定はしない。
- 参考スコア(独自算出の注目度): 55.77015419028725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decision-making pipelines are generally characterized by tradeoffs among various risk functions. It is often desirable to manage such tradeoffs in a data-adaptive manner. As we demonstrate, if this is done naively, state-of-the art uncertainty quantification methods can lead to significant violations of putative risk guarantees. To address this issue, we develop methods that permit valid control of risk when threshold and tradeoff parameters are chosen adaptively. Our methodology supports monotone and nearly-monotone risks, but otherwise makes no distributional assumptions. To illustrate the benefits of our approach, we carry out numerical experiments on synthetic data and the large-scale vision dataset MS-COCO.
- Abstract(参考訳): 意思決定パイプラインは一般的に、様々なリスク関数間のトレードオフによって特徴づけられる。
このようなトレードオフをデータ順応的に管理することが望ましい場合が多い。
以下に示すように、この方法が素直に行われている場合、最先端の不確実性定量化手法は、想定されるリスク保証に重大な違反をもたらす可能性がある。
この問題に対処するため、しきい値とトレードオフパラメータが適応的に選択された場合のリスクの有効な制御を可能にする手法を開発した。
提案手法は単調なリスクとほぼ単調なリスクをサポートするが,それ以外は分布的な仮定はしない。
提案手法の利点を説明するため,合成データと大規模視覚データセットMS-COCOの数値実験を行った。
関連論文リスト
- Data-driven decision-making under uncertainty with entropic risk measure [5.407319151576265]
エントロピーリスク尺度は、不確実な損失に関連する尾のリスクを考慮に入れた高い意思決定に広く用いられている。
経験的エントロピーリスク推定器を劣化させるため, 強く一貫したブートストラップ手法を提案する。
検証性能のバイアスが補正されない場合,クロスバリデーション手法は,保険業者のアウト・オブ・サンプルリスクを著しく高める可能性があることを示す。
論文 参考訳(メタデータ) (2024-09-30T04:02:52Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
本稿では,データ導出情報によるデータ多様体の幾何を考慮した移動型IV推定器を提案する。
本手法のプラグイン・アンド・プレイ実装は,標準設定で関連する推定器と同等に動作する。
論文 参考訳(メタデータ) (2024-05-19T17:49:33Z) - Predictive Uncertainty Quantification via Risk Decompositions for Strictly Proper Scoring Rules [7.0549244915538765]
予測モデリングの不確かさは、しばしばアドホック法に依存する。
本稿では,統計的リスクを通じて不確実性を理解するための理論的アプローチを紹介する。
我々は、ポイントワイズリスクをベイズリスクと過剰リスクに分割する方法を示す。
論文 参考訳(メタデータ) (2024-02-16T14:40:22Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Non-Exchangeable Conformal Risk Control [12.381447108228635]
分割共形予測は、公式に保証された不確実性セットや間隔を提供する能力によって、最近大きな関心を集めている。
本研究では,データ交換不能時のモノトーン損失関数の期待値を制御できる非交換型共形リスク制御を提案する。
私たちのフレームワークはフレキシブルで、仮定はごくわずかで、所定のテスト例に対する関連性に基づいてデータを重み付けできます。
論文 参考訳(メタデータ) (2023-10-02T15:00:19Z) - Domain Generalization without Excess Empirical Risk [83.26052467843725]
一般的なアプローチは、一般化を捉え、ペナルティと共同で経験的リスクを最小化するために、データ駆動の代理ペナルティを設計することである。
我々は、このレシピの重大な失敗モードは、共同最適化における誤ったペナルティや難しさによる過度なリスクであると主張している。
我々は,この問題を解消するアプローチを提案し,経験的リスクと刑罰を同時に最小化する代わりに,経験的リスクの最適性の制約の下でのペナルティを最小化する。
論文 参考訳(メタデータ) (2023-08-30T08:46:46Z) - Risk Consistent Multi-Class Learning from Label Proportions [64.0125322353281]
本研究は,バッグにトレーニングインスタンスを提供するMCLLP設定によるマルチクラス学習に対処する。
既存のほとんどのMCLLPメソッドは、インスタンスの予測や擬似ラベルの割り当てにバッグワイズな制約を課している。
経験的リスク最小化フレームワークを用いたリスク一貫性手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T03:49:04Z) - Identifying Causal-Effect Inference Failure with Uncertainty-Aware
Models [41.53326337725239]
本稿では,不確実性推定を最先端のニューラルネットワーク手法のクラスに統合する実践的アプローチを提案する。
提案手法は,高次元データに共通する「非オーバーラップ」の状況に優雅に対処できることを示す。
正確なモデリングの不確実性は、過度に自信を持ち、潜在的に有害なレコメンデーションを与えるのを防ぐことができる。
論文 参考訳(メタデータ) (2020-07-01T00:37:41Z) - Deep Survival Machines: Fully Parametric Survival Regression and
Representation Learning for Censored Data with Competing Risks [14.928328404160299]
本稿では,検閲データを用いた時系列予測問題において,相対リスクを推定するための新しいアプローチについて述べる。
我々のアプローチは、基礎となる生存分布の一定の比例的ハザードの強い仮定を必要としない。
これは検閲の有無で競合するリスクを伴う生存時間を完全にパラメトリックに推定する最初の作品である。
論文 参考訳(メタデータ) (2020-03-02T20:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。