Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation
- URL: http://arxiv.org/abs/2105.05013v1
- Date: Tue, 11 May 2021 13:21:25 GMT
- Title: Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation
- Authors: Shuang Li, Binhui Xie, Bin Zang, Chi Harold Liu, Xinjing Cheng,
Ruigang Yang and Guoren Wang
- Abstract summary: Domain adaptive semantic segmentation refers to making predictions on a certain target domain with only annotations of a specific source domain.
We present a semantic distribution-aware contrastive adaptation algorithm that enables pixel-wise representation alignment.
We evaluate SDCA on multiple benchmarks, achieving considerable improvements over existing algorithms.
- Score: 50.621269117524925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptive semantic segmentation refers to making predictions on a
certain target domain with only annotations of a specific source domain.
Current state-of-the-art works suggest that performing category alignment can
alleviate domain shift reasonably. However, they are mainly based on
image-to-image adversarial training and little consideration is given to
semantic variations of an object among images, failing to capture a
comprehensive picture of different categories. This motivates us to explore a
holistic representative, the semantic distribution from each category in source
domain, to mitigate the problem above. In this paper, we present semantic
distribution-aware contrastive adaptation algorithm that enables pixel-wise
representation alignment under the guidance of semantic distributions.
Specifically, we first design a pixel-wise contrastive loss by considering the
correspondences between semantic distributions and pixel-wise representations
from both domains. Essentially, clusters of pixel representations from the same
category should cluster together and those from different categories should
spread out. Next, an upper bound on this formulation is derived by involving
the learning of an infinite number of (dis)similar pairs, making it efficient.
Finally, we verify that SDCA can further improve segmentation accuracy when
integrated with the self-supervised learning. We evaluate SDCA on multiple
benchmarks, achieving considerable improvements over existing algorithms.The
code is publicly available at https://github.com/BIT-DA/SDCA
Related papers
- SSA-Seg: Semantic and Spatial Adaptive Pixel-level Classifier for Semantic Segmentation [11.176993272867396]
In this paper, we propose a novel Semantic and Spatial Adaptive (SSA-Seg) to address the challenges of semantic segmentation.
Specifically, we employ the coarse masks obtained from the fixed prototypes as a guide to adjust the fixed prototype towards the center of the semantic and spatial domains in the test image.
Results show that the proposed SSA-Seg significantly improves the segmentation performance of the baseline models with only a minimal increase in computational cost.
arXiv Detail & Related papers (2024-05-10T15:14:23Z) - I2F: A Unified Image-to-Feature Approach for Domain Adaptive Semantic
Segmentation [55.633859439375044]
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work.
Key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly.
This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation.
arXiv Detail & Related papers (2023-01-03T15:19:48Z) - Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
We propose a new unsupervised domain adaptation method for the semantic segmentation of very high resolution images.
An image-to-image translation paradigm is proposed, based on an encoder-decoder principle where latent content representations are mixed across domains.
Cross-city comparative experiments have shown that the proposed method outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2022-12-07T18:16:17Z) - SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic
Segmentation [52.62441404064957]
Domain adaptive semantic segmentation attempts to make satisfactory dense predictions on an unlabeled target domain by utilizing the model trained on a labeled source domain.
Many methods tend to alleviate noisy pseudo labels, however, they ignore intrinsic connections among cross-domain pixels with similar semantic concepts.
We propose Semantic-Guided Pixel Contrast (SePiCo), a novel one-stage adaptation framework that highlights the semantic concepts of individual pixel.
arXiv Detail & Related papers (2022-04-19T11:16:29Z) - SPCL: A New Framework for Domain Adaptive Semantic Segmentation via
Semantic Prototype-based Contrastive Learning [6.705297811617307]
Domain adaptation can help in transferring knowledge from a labeled source domain to an unlabeled target domain.
We propose a novel semantic prototype-based contrastive learning framework for fine-grained class alignment.
Our method is easy to implement and attains superior results compared to state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-24T09:26:07Z) - More Separable and Easier to Segment: A Cluster Alignment Method for
Cross-Domain Semantic Segmentation [41.81843755299211]
We propose a new UDA semantic segmentation approach based on domain assumption closeness to alleviate the above problems.
Specifically, a prototype clustering strategy is applied to cluster pixels with the same semantic, which will better maintain associations among target domain pixels.
Experiments conducted on GTA5 and SYNTHIA proved the effectiveness of our method.
arXiv Detail & Related papers (2021-05-07T10:24:18Z) - Pixel-Level Cycle Association: A New Perspective for Domain Adaptive
Semantic Segmentation [169.82760468633236]
We propose to build the pixel-level cycle association between source and target pixel pairs.
Our method can be trained end-to-end in one stage and introduces no additional parameters.
arXiv Detail & Related papers (2020-10-31T00:11:36Z) - Affinity Space Adaptation for Semantic Segmentation Across Domains [57.31113934195595]
In this paper, we address the problem of unsupervised domain adaptation (UDA) in semantic segmentation.
Motivated by the fact that source and target domain have invariant semantic structures, we propose to exploit such invariance across domains.
We develop two affinity space adaptation strategies: affinity space cleaning and adversarial affinity space alignment.
arXiv Detail & Related papers (2020-09-26T10:28:11Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
We propose aSimultaneous Semantic Alignment Network (SSAN) to simultaneously exploit correlations among categories and align the centroids for each category across domains.
By leveraging target pseudo-labels, a robust triplet-centroid alignment mechanism is explicitly applied to align feature representations for each category.
Experiments on various HDA tasks across text-to-image, image-to-image and text-to-text successfully validate the superiority of our SSAN against state-of-the-art HDA methods.
arXiv Detail & Related papers (2020-08-04T16:20:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.