Performance Comparison of Different Machine Learning Algorithms on the
Prediction of Wind Turbine Power Generation
- URL: http://arxiv.org/abs/2105.05197v1
- Date: Tue, 11 May 2021 17:02:24 GMT
- Title: Performance Comparison of Different Machine Learning Algorithms on the
Prediction of Wind Turbine Power Generation
- Authors: Onder Eyecioglu, Batuhan Hangun, Korhan Kayisli, Mehmet Yesilbudak
- Abstract summary: Wind power penetration has increased the difficulty and complexity in dispatching and planning of electric power systems.
It is needed to make the high-precision wind power prediction in order to balance the electrical power.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past decade, wind energy has gained more attention in the world.
However, owing to its indirectness and volatility properties, wind power
penetration has increased the difficulty and complexity in dispatching and
planning of electric power systems. Therefore, it is needed to make the
high-precision wind power prediction in order to balance the electrical power.
For this purpose, in this study, the prediction performance of linear
regression, k-nearest neighbor regression and decision tree regression
algorithms is compared in detail. k-nearest neighbor regression algorithm
provides lower coefficient of determination values, while decision tree
regression algorithm produces lower mean absolute error values. In addition,
the meteorological parameters of wind speed, wind direction, barometric
pressure and air temperature are evaluated in terms of their importance on the
wind power parameter. The biggest importance factor is achieved by wind speed
parameter. In consequence, many useful assessments are made for wind power
predictions.
Related papers
- Hiformer: Hybrid Frequency Feature Enhancement Inverted Transformer for Long-Term Wind Power Prediction [6.936415534357298]
We propose a novel approach called Hybrid Frequency Feature Enhancement Inverted Transformer (Hiformer)
Hiformer integrates signal decomposition technology with weather feature extraction technique to enhance the modeling of correlations between meteorological conditions and wind power generation.
Compared to the state-of-the-art methods, Hiformer: (i) can improve the prediction accuracy by up to 52.5%; and (ii) can reduce computational time by up to 68.5%.
arXiv Detail & Related papers (2024-10-17T08:00:36Z) - Ultra-short-term multi-step wind speed prediction for wind farms based on adaptive noise reduction technology and temporal convolutional network [0.0]
This study proposes a new wind speed prediction model based on data noise reduction technology, temporal convolutional network (TCN), and gated recurrent unit (GRU)
The proposed model was validated on three wind farms in Shandong Province.
arXiv Detail & Related papers (2023-11-27T03:53:19Z) - Prediction of wind turbines power with physics-informed neural networks
and evidential uncertainty quantification [2.126171264016785]
We use physics-informed neural networks to reproduce historical data coming from 4 turbines in a wind farm.
The developed models for regression of the power, torque, and power coefficient showed great accuracy for both real data and physical equations governing the system.
arXiv Detail & Related papers (2023-07-27T07:58:38Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - Data-Driven Stochastic AC-OPF using Gaussian Processes [54.94701604030199]
Integrating a significant amount of renewables into a power grid is probably the most a way to reduce carbon emissions from power grids slow down climate change.
This paper presents an alternative data-driven approach based on the AC power flow equations that can incorporate uncertainty inputs.
The GP approach learns a simple yet non-constrained data-driven approach to close this gap to the AC power flow equations.
arXiv Detail & Related papers (2022-07-21T23:02:35Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
We propose two new approaches for the analysis of wind turbine health.
The first method aims at evaluating the decrease or increase in relatively high and low power production.
The second method evaluates the overall drift of the extracted concepts.
arXiv Detail & Related papers (2021-12-09T14:04:55Z) - Wind Power Projection using Weather Forecasts by Novel Deep Neural
Networks [0.0]
Using optimized machine learning algorithms, it is possible to find obscured patterns in the observations and obtain meaningful data.
The paper explores the use of both parametric and the non-parametric models for calculating wind power prediction using power curves.
arXiv Detail & Related papers (2021-08-22T17:46:36Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z) - Wind Speed Prediction and Visualization Using Long Short-Term Memory
Networks (LSTM) [1.8495489370732452]
This paper proposes the prediction of wind speed that simplifies wind farm planning and feasibility study.
The results show a deep learning approach, long short-term memory (LSTM) outperforms other models with the highest accuracy of 97.8%.
arXiv Detail & Related papers (2020-05-22T17:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.