Ultra-short-term multi-step wind speed prediction for wind farms based on adaptive noise reduction technology and temporal convolutional network
- URL: http://arxiv.org/abs/2311.16198v2
- Date: Mon, 22 Apr 2024 15:53:08 GMT
- Title: Ultra-short-term multi-step wind speed prediction for wind farms based on adaptive noise reduction technology and temporal convolutional network
- Authors: Haojian Huang,
- Abstract summary: This study proposes a new wind speed prediction model based on data noise reduction technology, temporal convolutional network (TCN), and gated recurrent unit (GRU)
The proposed model was validated on three wind farms in Shandong Province.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an important clean and renewable kind of energy, wind power plays an important role in coping with energy crisis and environmental pollution. However, the volatility and intermittency of wind speed restrict the development of wind power. To improve the utilization of wind power, this study proposes a new wind speed prediction model based on data noise reduction technology, temporal convolutional network (TCN), and gated recurrent unit (GRU). Firstly, an adaptive data noise reduction algorithm P-SSA is proposed based on singular spectrum analysis (SSA) and Pearson correlation coefficient. The original wind speed is decomposed into multiple subsequences by SSA and then reconstructed. When the Pearson correlation coefficient between the reconstructed sequence and the original sequence is greater than 0.99, other noise subsequences are deleted to complete the data denoising. Then, the receptive field of the samples is expanded through the causal convolution and dilated convolution of TCN, and the characteristics of wind speed change are extracted. Then, the time feature information of the sequence is extracted by GRU, and then the wind speed is predicted to form the wind speed sequence prediction model of P-SSA-TCN-GRU. The proposed model was validated on three wind farms in Shandong Province. The experimental results show that the prediction performance of the proposed model is better than that of the traditional model and other models based on TCN, and the wind speed prediction of wind farms with high precision and strong stability is realized. The wind speed predictions of this model have the potential to become the data that support the operation and management of wind farms. The code is available at https://github.com/JethroJames/Wind-Speed-Forecast-TCN_GRU
Related papers
- TCNFormer: Temporal Convolutional Network Former for Short-Term Wind Speed Forecasting [9.47727784069628]
This study proposes the Temporal ConTemporalal Former (TCNFormer) for short-term (12-hour) wind speed forecasting.
The findings indicate that the TCNFormer outperforms state-of-the-art models in prediction accuracy.
arXiv Detail & Related papers (2024-08-27T15:35:42Z) - Windformer:Bi-Directional Long-Distance Spatio-Temporal Network For Wind
Speed Prediction [21.347186062986726]
Wind speed prediction is critical to the management of wind power generation.
This paper proposes Windformer, which divides the wind turbine cluster into multiple non-overlapping windows, calculates correlations inside the windows, and shifts the windows to provide connectivity between windows.
Compared with other current-advanced methods, the Mean Square Error (MSE) of Windformer is reduced by 0.5% to 15% on two datasets from NERL.
arXiv Detail & Related papers (2023-11-24T07:06:18Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - Enhancing Short-Term Wind Speed Forecasting using Graph Attention and
Frequency-Enhanced Mechanisms [17.901334082943077]
GFST-WSF comprises a Transformer architecture for temporal feature extraction and a Graph Attention Network (GAT) for spatial feature extraction.
GAT is specifically designed to capture the complex spatial dependencies among wind speed stations.
Model time lag in wind speed correlation between adjacent wind farms caused by geographical factors.
arXiv Detail & Related papers (2023-05-19T08:50:58Z) - Multi-Step Short-Term Wind Speed Prediction with Rank Pooling and Fast
Fourier Transformation [0.0]
Short-term wind speed prediction is essential for economical wind power utilization.
The real-world wind speed data is typically intermittent and fluctuating, presenting great challenges to existing shallow models.
We present a novel deep hybrid model for multi-step wind speed prediction, namely LR-FFT-RP-MLP/LSTM.
arXiv Detail & Related papers (2022-11-23T14:02:52Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT)
The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications.
arXiv Detail & Related papers (2022-05-22T12:16:43Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Hybrid Transformer Network for Different Horizons-based Enriched Wind
Speed Forecasting [0.0]
Highly accurate different horizon-based wind speed forecasting facilitates a better modern power system.
This paper proposed a novel astute hybrid wind speed forecasting model and applied it to different horizons.
Comparative analysis with real-time Kethanur, India wind farm dataset results reveals the proposed ICEEMDAN-TNF-MLPN-RECS hybrid model's superior performance.
arXiv Detail & Related papers (2022-04-07T12:03:53Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
We propose two new approaches for the analysis of wind turbine health.
The first method aims at evaluating the decrease or increase in relatively high and low power production.
The second method evaluates the overall drift of the extracted concepts.
arXiv Detail & Related papers (2021-12-09T14:04:55Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.