Wind Power Projection using Weather Forecasts by Novel Deep Neural
Networks
- URL: http://arxiv.org/abs/2108.09797v1
- Date: Sun, 22 Aug 2021 17:46:36 GMT
- Title: Wind Power Projection using Weather Forecasts by Novel Deep Neural
Networks
- Authors: Alagappan Swaminathan, Venkatakrishnan Sutharsan, Tamilselvi Selvaraj
- Abstract summary: Using optimized machine learning algorithms, it is possible to find obscured patterns in the observations and obtain meaningful data.
The paper explores the use of both parametric and the non-parametric models for calculating wind power prediction using power curves.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The transition from conventional methods of energy production to renewable
energy production necessitates better prediction models of the upcoming supply
of renewable energy. In wind power production, error in forecasting production
is impossible to negate owing to the intermittence of wind. For successful
power grid integration, it is crucial to understand the uncertainties that
arise in predicting wind power production and use this information to build an
accurate and reliable forecast. This can be achieved by observing the
fluctuations in wind power production with changes in different parameters such
as wind speed, temperature, and wind direction, and deriving functional
dependencies for the same. Using optimized machine learning algorithms, it is
possible to find obscured patterns in the observations and obtain meaningful
data, which can then be used to accurately predict wind power requirements .
Utilizing the required data provided by the Gamesa's wind farm at Bableshwar,
the paper explores the use of both parametric and the non-parametric models for
calculating wind power prediction using power curves. The obtained results are
subject to comparison to better understand the accuracy of the utilized models
and to determine the most suitable model for predicting wind power production
based on the given data set.
Related papers
- Bias correction of wind power forecasts with SCADA data and continuous
learning [0.0]
We present, evaluate, and compare four machine learning-based wind power forecasting models.
The models are evaluated on datasets from a wind park comprising 65 wind turbines.
arXiv Detail & Related papers (2024-02-21T16:31:45Z) - Prediction of wind turbines power with physics-informed neural networks
and evidential uncertainty quantification [2.126171264016785]
We use physics-informed neural networks to reproduce historical data coming from 4 turbines in a wind farm.
The developed models for regression of the power, torque, and power coefficient showed great accuracy for both real data and physical equations governing the system.
arXiv Detail & Related papers (2023-07-27T07:58:38Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Integrating wind variability to modelling wind-ramp events using a
non-binary ramp function and deep learning models [0.0]
We discuss limitations of current predictive practices and explore the use of Machine Learning methods to enhance wind ramp event classification and prediction.
We additionally outline a design for a novel approach to wind ramp prediction, in which high-resolution wind fields are incorporated to the modelling of wind power.
arXiv Detail & Related papers (2022-08-31T10:40:35Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
We propose two new approaches for the analysis of wind turbine health.
The first method aims at evaluating the decrease or increase in relatively high and low power production.
The second method evaluates the overall drift of the extracted concepts.
arXiv Detail & Related papers (2021-12-09T14:04:55Z) - Uncertainty Set Prediction of Aggregated Wind Power Generation based on
Bayesian LSTM and Spatio-Temporal Analysis [42.68418705495523]
This paper focuses on the uncertainty set prediction of the aggregated generation of geographically distributed wind farms.
A Spatio-temporal model is proposed to learn the dynamic features from partial observation in near-surface wind fields of neighboring wind farms.
Numerical testing results based on the actual data with 6 wind farms in northwest China show that the uncertainty set of aggregated wind generation is less volatile than that of a single wind farm.
arXiv Detail & Related papers (2021-10-07T11:57:16Z) - Deep Spatio-Temporal Wind Power Forecasting [4.219722822139438]
We develop a deep learning approach based on encoder-decoder structure.
Our model forecasts wind power generated by a wind turbine using its spatial location relative to other turbines and historical wind speed data.
arXiv Detail & Related papers (2021-09-29T16:26:10Z) - Spatio-temporal estimation of wind speed and wind power using machine
learning: predictions, uncertainty and technical potential [0.0]
The wind power estimate presented here represents an important input for planners to support the design of energy systems with increased wind power generation.
The methodology is applied to the study of hourly wind power potential on a grid of $250times 250$ m$2$ for turbines of 100 meters hub height in Switzerland.
arXiv Detail & Related papers (2021-07-29T09:52:36Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.