Multilabel Classification for Lung Disease Detection: Integrating Deep Learning and Natural Language Processing
- URL: http://arxiv.org/abs/2412.11452v1
- Date: Mon, 16 Dec 2024 05:14:08 GMT
- Title: Multilabel Classification for Lung Disease Detection: Integrating Deep Learning and Natural Language Processing
- Authors: Maria Efimovich, Jayden Lim, Vedant Mehta, Ethan Poon,
- Abstract summary: We propose a novel transfer learning model for multi-label lung disease classification.
The proposed model achieved an F1 score of 0.69 and an AUROC of 0.86, demonstrating its potential for clinical applications.
- Score: 0.0
- License:
- Abstract: Classifying chest radiographs is a time-consuming and challenging task, even for experienced radiologists. This provides an area for improvement due to the difficulty in precisely distinguishing between conditions such as pleural effusion, pneumothorax, and pneumonia. We propose a novel transfer learning model for multi-label lung disease classification, utilizing the CheXpert dataset with over 12,617 images of frontal radiographs being analyzed. By integrating RadGraph parsing for efficient annotation extraction, we enhance the model's ability to accurately classify multiple lung diseases from complex medical images. The proposed model achieved an F1 score of 0.69 and an AUROC of 0.86, demonstrating its potential for clinical applications. Also explored was the use of Natural Language Processing (NLP) to parse report metadata and address uncertainties in disease classification. By comparing uncertain reports with more certain cases, the NLP-enhanced model improves its ability to conclusively classify conditions. This research highlights the connection between deep learning and NLP, underscoring their potential to enhance radiological diagnostics and aid in the efficient analysis of chest radiographs.
Related papers
- Fast-staged CNN Model for Accurate pulmonary diseases and Lung cancer detection [0.0]
This research evaluates a deep learning model designed to detect lung cancer, specifically pulmonary nodules, along with eight other lung pathologies, using chest radiographs.
A two-stage classification system, utilizing ensemble methods and transfer learning, is employed to first triage images into Normal or Abnormal.
The model achieves notable results in classification, with a top-performing accuracy of 77%, a sensitivity of 0.713, a specificity of 0.776 during external validation, and an AUC score of 0.888.
arXiv Detail & Related papers (2024-12-16T11:47:07Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images.
Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists.
We present a novel multi-modal deep neural network framework for generating chest X-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes.
arXiv Detail & Related papers (2023-11-18T14:37:53Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
Lung cancer has been one of the leading causes of cancer-related deaths worldwide for years.
Deep learning, computer-assisted diagnosis (CAD) models based on learning algorithms can accelerate the screening process.
However, developing robust and accurate models often requires large-scale and diverse medical datasets with high-quality annotations.
arXiv Detail & Related papers (2023-05-02T01:04:22Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Debiasing pipeline improves deep learning model generalization for X-ray
based lung nodule detection [11.228544549618068]
Lung cancer is the leading cause of cancer death worldwide and a good prognosis depends on early diagnosis.
We show that an image pre-processing pipeline that homogenizes and debiases chest X-ray images can improve both internal classification and external generalization.
An evolutionary pruning mechanism is used to train a nodule detection deep learning model on the most informative images from a publicly available lung nodule X-ray dataset.
arXiv Detail & Related papers (2022-01-24T10:08:07Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
Diseased lung regions often produce high-density zones on CT images, limiting an algorithm's execution to specify damaged lobes.
This impact motivated developing an improved machine learning method to segment lung lobes.
The approach can be readily adopted in the clinical setting as a robust tool for radiologists.
arXiv Detail & Related papers (2021-05-11T17:10:25Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Joint Modeling of Chest Radiographs and Radiology Reports for Pulmonary
Edema Assessment [39.60171837961607]
We develop a neural network model that is trained on both images and free-text to assess pulmonary edema severity from chest radiographs at inference time.
Our experimental results suggest that the joint image-text representation learning improves the performance of pulmonary edema assessment.
arXiv Detail & Related papers (2020-08-22T17:28:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.