Benchmarking near-term quantum computers via random circuit sampling
- URL: http://arxiv.org/abs/2105.05232v2
- Date: Tue, 19 Apr 2022 21:34:49 GMT
- Title: Benchmarking near-term quantum computers via random circuit sampling
- Authors: Yunchao Liu, Matthew Otten, Roozbeh Bassirianjahromi, Liang Jiang,
Bill Fefferman
- Abstract summary: We develop an algorithm that can sample-efficiently estimate the total amount of noise induced by a layer of arbitrary non-Clifford gates.
Our algorithm is inspired by Google's quantum supremacy experiment and is based on random circuit sampling.
- Score: 3.48887080077816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing scale of near-term quantum hardware motivates the need for
efficient noise characterization methods, since qubit and gate level techniques
cannot capture crosstalk and correlated noise in many qubit systems. While
scalable approaches, such as cycle benchmarking, are known for special classes
of quantum circuits, the characterization of noise in general circuits with
non-Clifford gates has been an unreachable task. We develop an algorithm that
can sample-efficiently estimate the total amount of noise induced by a layer of
arbitrary non-Clifford gates, including all crosstalks, and experimentally
demonstrate the method on IBM Quantum hardware. Our algorithm is inspired by
Google's quantum supremacy experiment and is based on random circuit sampling.
In their paper, Google observed that their experimental linear cross entropy
was consistent with a simple uncorrelated noise model, and claimed this
coincidence indicated that the noise in their device was uncorrelated -- a key
step in hardware development towards fault tolerance. As an application, we
show that our result provides formal evidence to support such a conclusion.
Related papers
- Optimized Noise Suppression for Quantum Circuits [0.40964539027092917]
Crosstalk noise is a severe error source in, e.g., cross-resonance based superconducting quantum processors.
Intrepid programming algorithm extends previous work on optimized qubit routing by swap insertion.
We evaluate the proposed method by characterizing crosstalk noise for two chips with up to 127 qubits.
arXiv Detail & Related papers (2024-01-12T07:34:59Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips [11.364693110852738]
We report the experimental realization of robust quantum gates in superconducting quantum circuits.
Our work provides a versatile toolbox for achieving noise-resilient complex quantum circuits.
arXiv Detail & Related papers (2024-01-03T16:12:35Z) - Accurate and Honest Approximation of Correlated Qubit Noise [39.58317527488534]
We propose an efficient systematic construction of approximate noise channels, where their accuracy can be enhanced by incorporating noise components with higher qubit-qubit correlation degree.
We find that, for realistic noise strength typical for fixed-frequency superconducting qubits, correlated noise beyond two-qubit correlation can significantly affect the code simulation accuracy.
arXiv Detail & Related papers (2023-11-15T19:00:34Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Mitigating depolarizing noise on quantum computers with noise-estimation
circuits [1.3375143521862154]
We present a method to mitigate the depolarizing noise by first estimating its rate with a noise-estimation circuit.
We find that our approach in combination with readout-error correction, compiling, randomized, and zero-noise extrapolation produces results close to exact results even for circuits containing hundreds of CNOT gates.
arXiv Detail & Related papers (2021-03-15T17:59:06Z) - Universal Dephasing Noise Injection via Schrodinger Wave Autoregressive
Moving Average Models [0.619788266425984]
We present and validate a novel method for noise injection of arbitrary spectra in quantum circuits.
This method can be applied to any system capable of executing arbitrary single qubit rotations, including cloud-based quantum processors.
arXiv Detail & Related papers (2021-02-05T19:00:08Z) - On the robustness of the hybrid qubit computational gates through
simulated randomized benchmarking protocols [0.0]
Noise characterization can be achieved by exploiting different techniques, such as randomization.
A scalable and robust algorithm able to benchmark the full set of Clifford gates is called randomized benchmarking.
In this study, we simulated randomized benchmarking protocols in a semiconducting all-electrical three-electron double-quantum dot qubit.
arXiv Detail & Related papers (2020-11-03T09:35:39Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.