Discrete-time Contraction-based Control of Nonlinear Systems with
Parametric Uncertainties using Neural Networks
- URL: http://arxiv.org/abs/2105.05432v1
- Date: Wed, 12 May 2021 05:07:34 GMT
- Title: Discrete-time Contraction-based Control of Nonlinear Systems with
Parametric Uncertainties using Neural Networks
- Authors: Lai Wei, Ryan McCloy and Jie Bao
- Abstract summary: This work develops an approach to discrete-time contraction analysis and control using neural networks.
The methodology involves training a neural network to learn a contraction metric and feedback gain.
The resulting contraction-based controller embeds the trained neural network and is capable of achieving efficient tracking of time-varying references.
- Score: 6.804154699470765
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Flexible manufacturing in the process industry requires control systems to
achieve time-varying setpoints (e.g., product specifications) based on market
demand. Contraction theory provides a useful framework for
reference-independent system analysis and tracking control for nonlinear
systems. However, determination of the control contraction metrics and control
laws can be very difficult for general nonlinear systems. This work develops an
approach to discrete-time contraction analysis and control using neural
networks. The methodology involves training a neural network to learn a
contraction metric and feedback gain. The resulting contraction-based
controller embeds the trained neural network and is capable of achieving
efficient tracking of time-varying references, with a full range of model
uncertainty, without the need for controller structure redesign. This is a
robust approach that can deal with bounded parametric uncertainties in the
process model, which are commonly encountered in industrial (chemical)
processes. Simulation examples are provided to illustrate the above approach.
Related papers
- Identification For Control Based on Neural Networks: Approximately Linearizable Models [42.15267357325546]
This work presents a control-oriented identification scheme for efficient control design and stability analysis of nonlinear systems.
Neural networks are used to identify a discrete-time nonlinear state-space model to approximate time-domain input-output behavior.
The network is constructed such that the identified model is approximately linearizable by feedback, ensuring that the control law trivially follows from the learning stage.
arXiv Detail & Related papers (2024-09-24T08:31:22Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - Learning Control-Oriented Dynamical Structure from Data [25.316358215670274]
We discuss a state-dependent nonlinear tracking controller formulation for general nonlinear control-affine systems.
We empirically demonstrate the efficacy of learned versions of this controller in stable trajectory tracking.
arXiv Detail & Related papers (2023-02-06T02:01:38Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - A Theoretical Overview of Neural Contraction Metrics for Learning-based
Control with Guaranteed Stability [7.963506386866862]
This paper presents a neural network model of an optimal contraction metric and corresponding differential Lyapunov function.
Its innovation lies in providing formal robustness guarantees for learning-based control frameworks.
arXiv Detail & Related papers (2021-10-02T00:28:49Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
We propose a novel and fully data driven control scheme which relies on machine learning (ML)
Exploiting recently developed ML-based prediction capabilities of complex systems, we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states coming from any initial state.
Having this highly flexible control scheme with little demands on the amount of required data on hand, we briefly discuss possible applications that range from engineering to medicine.
arXiv Detail & Related papers (2021-02-23T16:58:26Z) - Neural-iLQR: A Learning-Aided Shooting Method for Trajectory
Optimization [17.25824905485415]
We present Neural-iLQR, a learning-aided shooting method over the unconstrained control space.
It is shown to outperform the conventional iLQR significantly in the presence of inaccuracies in system models.
arXiv Detail & Related papers (2020-11-21T07:17:28Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Reach-SDP: Reachability Analysis of Closed-Loop Systems with Neural
Network Controllers via Semidefinite Programming [19.51345816555571]
We propose a novel forward reachability analysis method for the safety verification of linear time-varying systems with neural networks in feedback.
We show that we can compute these approximate reachable sets using semidefinite programming.
We illustrate our method in a quadrotor example, in which we first approximate a nonlinear model predictive controller via a deep neural network and then apply our analysis tool to certify finite-time reachability and constraint satisfaction of the closed-loop system.
arXiv Detail & Related papers (2020-04-16T18:48:25Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.