Model-based controller assisted domain randomization in deep reinforcement learning: application to nonlinear powertrain control
- URL: http://arxiv.org/abs/2504.19715v1
- Date: Mon, 28 Apr 2025 12:09:07 GMT
- Title: Model-based controller assisted domain randomization in deep reinforcement learning: application to nonlinear powertrain control
- Authors: Heisei Yonezawa, Ansei Yonezawa, Itsuro Kajiwara,
- Abstract summary: This study proposes a new robust control approach using the framework of deep reinforcement learning (DRL)<n>The problem setup is modeled via the latent Markov decision process (LMDP), a set of vanilla MDPs, for a controlled system subject to uncertainties and nonlinearities.<n>Compared to traditional DRL-based controls, the proposed controller design is smarter in that we can achieve a high level of generalization ability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex mechanical systems such as vehicle powertrains are inherently subject to multiple nonlinearities and uncertainties arising from parametric variations. Modeling and calibration errors are therefore unavoidable, making the transfer of control systems from simulation to real-world systems a critical challenge. Traditional robust controls have limitations in handling certain types of nonlinearities and uncertainties, requiring a more practical approach capable of comprehensively compensating for these various constraints. This study proposes a new robust control approach using the framework of deep reinforcement learning (DRL). The key strategy lies in the synergy among domain randomization-based DRL, long short-term memory (LSTM)-based actor and critic networks, and model-based control (MBC). The problem setup is modeled via the latent Markov decision process (LMDP), a set of vanilla MDPs, for a controlled system subject to uncertainties and nonlinearities. In LMDP, the dynamics of an environment simulator is randomized during training to improve the robustness of the control system to real testing environments. The randomization increases training difficulties as well as conservativeness of the resultant control system; therefore, progress is assisted by concurrent use of a model-based controller based on a nominal system model. Compared to traditional DRL-based controls, the proposed controller design is smarter in that we can achieve a high level of generalization ability with a more compact neural network architecture and a smaller amount of training data. The proposed approach is verified via practical application to active damping for a complex powertrain system with nonlinearities and parametric variations. Comparative tests demonstrate the high robustness of the proposed approach.
Related papers
- Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
We propose a novel framework, Neural Internal Model Control, which integrates model-based control with RL-based control to enhance robustness.<n>Our framework streamlines the predictive model by applying Newton-Euler equations for rigid-body dynamics, eliminating the need to capture complex high-dimensional nonlinearities.<n>We demonstrate the effectiveness of our framework on both quadrotors and quadrupedal robots, achieving superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-11-20T07:07:42Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
We present a method for reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC.
We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC.
arXiv Detail & Related papers (2023-08-03T10:21:53Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
We present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems.
Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions.
arXiv Detail & Related papers (2022-10-23T00:45:05Z) - Bridging Model-based Safety and Model-free Reinforcement Learning
through System Identification of Low Dimensional Linear Models [16.511440197186918]
We propose a new method to combine model-based safety with model-free reinforcement learning.
We show that a low-dimensional dynamical model is sufficient to capture the dynamics of the closed-loop system.
We illustrate that the found linear model is able to provide guarantees by safety-critical optimal control framework.
arXiv Detail & Related papers (2022-05-11T22:03:18Z) - Steady-State Error Compensation in Reference Tracking and Disturbance
Rejection Problems for Reinforcement Learning-Based Control [0.9023847175654602]
Reinforcement learning (RL) is a promising, upcoming topic in automatic control applications.
Initiative action state augmentation (IASA) for actor-critic-based RL controllers is introduced.
This augmentation does not require any expert knowledge, leaving the approach model free.
arXiv Detail & Related papers (2022-01-31T16:29:19Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Deep Learning Explicit Differentiable Predictive Control Laws for
Buildings [1.4121977037543585]
We present a differentiable predictive control (DPC) methodology for learning constrained control laws for unknown nonlinear systems.
DPC poses an approximate solution to multiparametric programming problems emerging from explicit nonlinear model predictive control (MPC)
arXiv Detail & Related papers (2021-07-25T16:47:57Z) - Two-step reinforcement learning for model-free redesign of nonlinear
optimal regulator [1.5624421399300306]
Reinforcement learning (RL) is one of the promising approaches that enable model-free redesign of optimal controllers for nonlinear dynamical systems.
We propose a model-free two-step design approach that improves the transient learning performance of RL in an optimal regulator redesign problem for unknown nonlinear systems.
arXiv Detail & Related papers (2021-03-05T17:12:33Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
We propose a generic nonlinear control policy class, parameterized by neural networks, that enforces the same provable robustness criteria as robust control.
We demonstrate the power of this approach on several domains, improving in average-case performance over existing robust control methods and in worst-case stability over (non-robust) deep RL methods.
arXiv Detail & Related papers (2020-11-16T17:14:59Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.