Prime number factorization using a spinor Bose-Einstein condensate
inspired topological quantum computer
- URL: http://arxiv.org/abs/2105.05448v1
- Date: Wed, 12 May 2021 06:06:19 GMT
- Title: Prime number factorization using a spinor Bose-Einstein condensate
inspired topological quantum computer
- Authors: Emil G\'enetay Johansen and Tapio Simula
- Abstract summary: We consider the quantum double $mathcalD(Q_8)$ anyon model as a platform to carry out a particular instance of Shor's factorization algorithm.
All necessary quantum gates, less one, can be compiled exactly for this hybrid topological quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by non-abelian vortex anyons in spinor Bose-Einstein condensates, we
consider the quantum double $\mathcal{D}(Q_8)$ anyon model as a platform to
carry out a particular instance of Shor's factorization algorithm. We provide
the excitation spectrum, the fusion rules, and the braid group representation
for this model, and design a circuit architecture that facilitates the
computation. All necessary quantum gates, less one, can be compiled exactly for
this hybrid topological quantum computer, and to achieve universality the last
operation can be implemented in a non-topological fashion. To analyse the
effect of decoherence on the computation, a noise model based on stochastic
unitary rotations is considered. The computational potential of this quantum
double anyon model is similar to that of the Majorana fermion based Ising anyon
model, offering a complementary future platform for topological quantum
computation.
Related papers
- Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - Quantum Simulation of an Open System: A Dissipative 1+1D Ising Model [0.0]
We implement quantum algorithms for the simulation of open or complex coupling quantum field theories on IBM devices.
Our successful reproduction of the transition represents a non-trivial test for current hardware.
arXiv Detail & Related papers (2023-11-30T17:25:48Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
We provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models.
Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables.
Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.
arXiv Detail & Related papers (2022-06-01T11:03:51Z) - Gutzwiller wave function on a quantum computer using a discrete
Hubbard-Stratonovich transformation [0.7734726150561086]
We propose a quantum-classical hybrid scheme for implementing the nonunitary Gutzwiller factor.
The proposed scheme is demonstrated with numerical simulations for the half-filled Fermi-Hubbard model.
arXiv Detail & Related papers (2022-01-27T08:57:04Z) - Chaos in coupled Kerr-nonlinear parametric oscillators [0.0]
We investigate complex dynamics, i.e., chaos, in two coupled nondissipative KPOs at a few-photon level.
We conclude that some of them can be regarded as quantum signatures of chaos, together with energy-level spacing statistics.
arXiv Detail & Related papers (2021-10-08T10:35:12Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - The quantum sine-Gordon model with quantum circuits [0.0]
We numerically investigate a one-dimensional, faithful, analog, quantum electronic circuit simulator built out of Josephson junctions.
We provide numerical evidence that the parameters required to realize the quantum sine-Gordon model are accessible with modern-day superconducting circuit technology.
arXiv Detail & Related papers (2020-07-14T07:39:31Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.