Chaos in coupled Kerr-nonlinear parametric oscillators
- URL: http://arxiv.org/abs/2110.04019v2
- Date: Wed, 13 Oct 2021 04:23:18 GMT
- Title: Chaos in coupled Kerr-nonlinear parametric oscillators
- Authors: Hayato Goto and Taro Kanao
- Abstract summary: We investigate complex dynamics, i.e., chaos, in two coupled nondissipative KPOs at a few-photon level.
We conclude that some of them can be regarded as quantum signatures of chaos, together with energy-level spacing statistics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Kerr-nonlinear parametric oscillator (KPO) can generate a quantum
superposition of two oscillating states, known as a Schr\"{o}dinger cat state,
via quantum adiabatic evolution, and can be used as a qubit for gate-based
quantum computing and quantum annealing. In this work, we investigate complex
dynamics, i.e., chaos, in two coupled nondissipative KPOs at a few-photon
level. After showing that a classical model for this system is nonintegrable
and consequently exhibits chaotic behavior, we provide quantum counterparts for
the classical results, which are quantum versions of the Poincar\'{e} surface
of section and its lower-dimensional version defined with time integrals of the
Wigner and Husimi functions, and also the initial and long-term behavior of
out-of-time-ordered correlators. We conclude that some of them can be regarded
as quantum signatures of chaos, together with energy-level spacing statistics
(conventional signature). Thus, the system of coupled KPOs is expected to offer
not only an alternative approach to quantum computing, but also a promising
platform for the study on quantum chaos.
Related papers
- Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - Chaos destroys the excited state quantum phase transition of the Kerr parametric oscillator [0.0]
We show how chaos arising from the interplay between the external drive and the nonlinearities of the system destroys the excited state quantum phase transition (ESQPT)
Our results demonstrate the importance of the analysis of theoretical models for the design of new parametric oscillators with ever larger nonlinearities.
arXiv Detail & Related papers (2024-08-01T21:56:00Z) - Variational Coherent Quantum Annealing [0.0]
We present a hybrid classical-quantum computing paradigm where the quantum part strictly runs within the coherence time of a quantum annealer.
We introduce auxiliary Hamiltonians that vanish at the beginning and end of the evolution to increase the energy gap during the process.
We achieve a substantial reduction in the ground-state error with just six variational parameters and a duration within the device coherence times.
arXiv Detail & Related papers (2023-10-03T17:53:03Z) - Effective Description of the Quantum Damped Harmonic Oscillator:
Revisiting the Bateman Dual System [0.3495246564946556]
We present a quantization scheme for the damped harmonic oscillator (QDHO) using a framework known as momentous quantum mechanics.
The significance of our study lies in its potential to serve as a foundational basis for the effective description of open quantum systems.
arXiv Detail & Related papers (2023-09-06T03:53:09Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum-classical entropy analysis for nonlinearly-coupled
continuous-variable bipartite systems [0.0]
We investigate the behavior of classical analogs arising upon the removal of interference traits.
By comparing the quantum and classical entropy values, it is shown that, instead of entanglement production, such entropies rather provide us with information.
arXiv Detail & Related papers (2021-11-19T11:39:15Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum limit-cycles and the Rayleigh and van der Pol oscillators [0.0]
Self-oscillating systems are emerging as canonical models for driven dissipative nonequilibrium open quantum systems.
We derive an exact analytical solution for the steady-state quantum dynamics of the simplest of these models.
Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero, temperature.
arXiv Detail & Related papers (2020-11-05T08:51:51Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.