On Quantum Circuits for Discrete Graphical Models
- URL: http://arxiv.org/abs/2206.00398v1
- Date: Wed, 1 Jun 2022 11:03:51 GMT
- Title: On Quantum Circuits for Discrete Graphical Models
- Authors: Nico Piatkowski, Christa Zoufal
- Abstract summary: We provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models.
Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables.
Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.
- Score: 1.0965065178451106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphical models are useful tools for describing structured high-dimensional
probability distributions. Development of efficient algorithms for generating
unbiased and independent samples from graphical models remains an active
research topic. Sampling from graphical models that describe the statistics of
discrete variables is a particularly challenging problem, which is intractable
in the presence of high dimensions. In this work, we provide the first method
that allows one to provably generate unbiased and independent samples from
general discrete factor models with a quantum circuit. Our method is compatible
with multi-body interactions and its success probability does not depend on the
number of variables. To this end, we identify a novel embedding of the
graphical model into unitary operators and provide rigorous guarantees on the
resulting quantum state. Moreover, we prove a unitary Hammersley-Clifford
theorem -- showing that our quantum embedding factorizes over the cliques of
the underlying conditional independence structure. Importantly, the quantum
embedding allows for maximum likelihood learning as well as maximum a
posteriori state approximation via state-of-the-art hybrid quantum-classical
methods. Finally, the proposed quantum method can be implemented on current
quantum processors. Experiments with quantum simulation as well as actual
quantum hardware show that our method can carry out sampling and parameter
learning on quantum computers.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Statistical learning on randomized data to verify quantum state k-designs [0.0]
Random ensembles of pure states have proven to be extremely important in various aspects of quantum physics.
generating a fully random ensemble is experimentally challenging but approximations are just as useful.
verifying their degree of randomness can be an expensive task, similar to performing full quantum state tomography on many-body systems.
arXiv Detail & Related papers (2023-05-02T14:46:28Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
We introduce a generalization of quantum natural gradient descent to parameterized mixed states.
We also provide a robust first-order approximating algorithm, Quantum-Probabilistic Mirror Descent.
Our approaches extend previously sample-efficient techniques to allow for flexibility in model choice.
arXiv Detail & Related papers (2022-06-09T17:58:15Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Quantum Sampling Algorithms, Phase Transitions, and Computational
Complexity [0.0]
Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine learning, and statistical physics.
The problem can in principle be solved on a quantum computer by preparing a quantum state that encodes the entire probability distribution followed by a projective measurement.
We investigate the complexity of adiabatically preparing such quantum states for the Gibbs distributions of various models including the Ising chain, hard-sphere models on different graphs, and a model encoding the unstructured search problem.
arXiv Detail & Related papers (2021-09-07T11:43:45Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Enhancing Generative Models via Quantum Correlations [1.6099403809839032]
Generative modeling using samples drawn from the probability distribution constitutes a powerful approach for unsupervised machine learning.
We show theoretically that such quantum correlations provide a powerful resource for generative modeling.
We numerically test this separation on standard machine learning data sets and show that it holds for practical problems.
arXiv Detail & Related papers (2021-01-20T22:57:22Z) - Learnability and Complexity of Quantum Samples [26.425493366198207]
Given a quantum circuit, a quantum computer can sample the output distribution exponentially faster in the number of bits than classical computers.
Can we learn the underlying quantum distribution using models with training parameters that scale in n under a fixed training time?
We study four kinds of generative models: Deep Boltzmann machine (DBM), Generative Adrial Networks (GANs), Long Short-Term Memory (LSTM) and Autoregressive GAN, on learning quantum data set generated by deep random circuits.
arXiv Detail & Related papers (2020-10-22T18:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.