Thematic fit bits: Annotation quality and quantity for event participant
representation
- URL: http://arxiv.org/abs/2105.06097v1
- Date: Thu, 13 May 2021 06:13:44 GMT
- Title: Thematic fit bits: Annotation quality and quantity for event participant
representation
- Authors: Yuval Marton, Asad Sayeed
- Abstract summary: Modeling thematic fit (a verb--argument compositional semantics task) currently requires a very large burden of data.
We take a high-performing neural approach to modeling verb--argument fit, previously trained on a linguistically machine-annotated large corpus, and replace corpus layers with output from higher-quality taggers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Modeling thematic fit (a verb--argument compositional semantics task)
currently requires a very large burden of data. We take a high-performing
neural approach to modeling verb--argument fit, previously trained on a
linguistically machine-annotated large corpus, and replace corpus layers with
output from higher-quality taggers. Contrary to popular beliefs that, in the
deep learning era, more data is as effective as higher quality annotation, we
discover that higher annotation quality dramatically reduces our data
requirement while demonstrating better supervised predicate-argument
classification. But in applying the model to a psycholinguistic task outside
the training objective, we saw only small gains in one of two thematic fit
estimation tasks, and none in the other. We replicate previous studies while
modifying certain role representation details, and set a new state-of-the-art
in event modeling, using a fraction of the data.
Related papers
- Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Let the Pretrained Language Models "Imagine" for Short Texts Topic
Modeling [29.87929724277381]
In short texts, co-occurrence information is minimal, which results in feature sparsity in document representation.
Existing topic models (probabilistic or neural) mostly fail to mine patterns from them to generate coherent topics.
We extend short text into longer sequences using existing pre-trained language models (PLMs)
arXiv Detail & Related papers (2023-10-24T00:23:30Z) - Teaching Smaller Language Models To Generalise To Unseen Compositional
Questions [6.9076450524134145]
We propose a combination of multitask pretraining on up to 93 tasks designed to instill diverse reasoning abilities.
We show that performance can be significantly improved by adding retrieval-augmented training datasets.
arXiv Detail & Related papers (2023-08-02T05:00:12Z) - Few-shot Text Classification with Dual Contrastive Consistency [31.141350717029358]
In this paper, we explore how to utilize pre-trained language model to perform few-shot text classification.
We adopt supervised contrastive learning on few labeled data and consistency-regularization on vast unlabeled data.
arXiv Detail & Related papers (2022-09-29T19:26:23Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Revisiting Self-Training for Few-Shot Learning of Language Model [61.173976954360334]
Unlabeled data carry rich task-relevant information, they are proven useful for few-shot learning of language model.
In this work, we revisit the self-training technique for language model fine-tuning and present a state-of-the-art prompt-based few-shot learner, SFLM.
arXiv Detail & Related papers (2021-10-04T08:51:36Z) - Improving Zero and Few-Shot Abstractive Summarization with Intermediate
Fine-tuning and Data Augmentation [101.26235068460551]
Models pretrained with self-supervised objectives on large text corpora achieve state-of-the-art performance on English text summarization tasks.
Models are typically fine-tuned on hundreds of thousands of data points, an infeasible requirement when applying summarization to new, niche domains.
We introduce a novel and generalizable method, called WikiTransfer, for fine-tuning pretrained models for summarization in an unsupervised, dataset-specific manner.
arXiv Detail & Related papers (2020-10-24T08:36:49Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
We propose a topic adaptive storyteller to model the ability of inter-topic generalization.
We also propose a prototype encoding structure to model the ability of intra-topic derivation.
Experimental results show that topic adaptation and prototype encoding structure mutually bring benefit to the few-shot model.
arXiv Detail & Related papers (2020-08-11T03:55:11Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.