Multi-scale Regional Attention Deeplab3+: Multiple Myeloma Plasma Cells
Segmentation in Microscopic Images
- URL: http://arxiv.org/abs/2105.06238v1
- Date: Thu, 13 May 2021 12:42:32 GMT
- Title: Multi-scale Regional Attention Deeplab3+: Multiple Myeloma Plasma Cells
Segmentation in Microscopic Images
- Authors: Afshin Bozorgpour, Reza Azad, Eman Showkatian, Alaa Sulaiman
- Abstract summary: Multiple myeloma cancer is a type of blood cancer that happens when the growth of abnormal plasma cells becomes out of control in the bone marrow.
There are various ways to diagnose multiple myeloma in bone marrow such as complete blood count test (CBC) or counting myeloma plasma cell in aspirate slide images.
An automatic deep learning method for the detection and segmentation of multiple myeloma plasma cell have been explored.
- Score: 2.121963121603413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiple myeloma cancer is a type of blood cancer that happens when the
growth of abnormal plasma cells becomes out of control in the bone marrow.
There are various ways to diagnose multiple myeloma in bone marrow such as
complete blood count test (CBC) or counting myeloma plasma cell in aspirate
slide images using manual visualization or through image processing technique.
In this work, an automatic deep learning method for the detection and
segmentation of multiple myeloma plasma cell have been explored. To this end, a
two-stage deep learning method is designed. In the first stage, the nucleus
detection network is utilized to extract each instance of a cell of interest.
The extracted instance is then fed to the multi-scale function to generate a
multi-scale representation. The objective of the multi-scale function is to
capture the shape variation and reduce the effect of object scale on the
cytoplasm segmentation network. The generated scales are then fed into a
pyramid of cytoplasm networks to learn the segmentation map in various scales.
On top of the cytoplasm segmentation network, we included a scale aggregation
function to refine and generate a final prediction. The proposed approach has
been evaluated on the SegPC2021 grand-challenge and ranked second on the final
test phase among all teams.
Related papers
- Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
We develop an automatic cell classification pipeline to label microscopy images.
We then train a classification model based on the category labels.
We deploy two types of segmentation models to segment cells with roundish and irregular shapes.
arXiv Detail & Related papers (2023-10-22T08:11:08Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - A novel framework employing deep multi-attention channels network for
the autonomous detection of metastasizing cells through fluorescence
microscopy [0.20999222360659603]
We developed a computational framework that can distinguish between normal and metastasizing human cells.
The method relies on fluorescence microscopy images showing the spatial organization of actin and vimentin filaments in normal and metastasizing single cells.
arXiv Detail & Related papers (2023-09-02T11:20:10Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
Medulloblastoma is the most common malignant brain cancer among children.
CNN has shown promising results for MB subtype classification.
We study the impact of tile size and input strategy.
arXiv Detail & Related papers (2021-09-14T09:42:37Z) - Enforcing Morphological Information in Fully Convolutional Networks to
Improve Cell Instance Segmentation in Fluorescence Microscopy Images [1.408123603417833]
We propose a novel cell instance segmentation approach based on the well-known U-Net architecture.
To enforce the learning of morphological information per pixel, a deep distance transformer (DDT) acts as a back-bone model.
The obtained results suggest a performance boost over traditional U-Net architectures.
arXiv Detail & Related papers (2021-06-10T15:54:38Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z) - A Multi-Scale Conditional Deep Model for Tumor Cell Ratio Counting [4.164451715899639]
We propose a method to accurately obtain the ratio of tumor cells over an entire histological slide.
We use deep fully convolutional neural network models trained to detect and classify cells on images of H&E-stained tissue sections.
We show that combining two models, each working at a different magnification allows the system to capture both cell-level details and surrounding context.
arXiv Detail & Related papers (2021-01-27T22:40:33Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
We introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm.
A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network.
We observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least $5.8%$ on average.
arXiv Detail & Related papers (2020-05-19T11:31:53Z) - Segmentation of Cellular Patterns in Confocal Images of Melanocytic
Lesions in vivo via a Multiscale Encoder-Decoder Network (MED-Net) [2.0487455621441377]
"Multiscale-Decoder Network (MED-Net)" provides pixel-wise labeling into classes of patterns in a quantitative manner.
We trained and tested our model on non-overlapping partitions of 117 reflectance confocal microscopy (RCM) mosaics of melanocytic lesions.
arXiv Detail & Related papers (2020-01-03T22:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.