A novel framework employing deep multi-attention channels network for
the autonomous detection of metastasizing cells through fluorescence
microscopy
- URL: http://arxiv.org/abs/2309.00911v1
- Date: Sat, 2 Sep 2023 11:20:10 GMT
- Title: A novel framework employing deep multi-attention channels network for
the autonomous detection of metastasizing cells through fluorescence
microscopy
- Authors: Michail Mamalakis, Sarah C. Macfarlane, Scott V. Notley, Annica K.B
Gad, George Panoutsos
- Abstract summary: We developed a computational framework that can distinguish between normal and metastasizing human cells.
The method relies on fluorescence microscopy images showing the spatial organization of actin and vimentin filaments in normal and metastasizing single cells.
- Score: 0.20999222360659603
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We developed a transparent computational large-scale imaging-based framework
that can distinguish between normal and metastasizing human cells. The method
relies on fluorescence microscopy images showing the spatial organization of
actin and vimentin filaments in normal and metastasizing single cells, using a
combination of multi-attention channels network and global explainable
techniques. We test a classification between normal cells (Bj primary
fibroblast), and their isogenically matched, transformed and invasive
counterpart (BjTertSV40TRasV12). Manual annotation is not trivial to automate
due to the intricacy of the biologically relevant features. In this research,
we utilized established deep learning networks and our new multi-attention
channel architecture. To increase the interpretability of the network - crucial
for this application area - we developed an interpretable global explainable
approach correlating the weighted geometric mean of the total cell images and
their local GradCam scores. The significant results from our analysis
unprecedently allowed a more detailed, and biologically relevant understanding
of the cytoskeletal changes that accompany oncogenic transformation of normal
to invasive and metastasizing cells. We also paved the way for a possible
spatial micrometre-level biomarker for future development of diagnostic tools
against metastasis (spatial distribution of vimentin).
Related papers
- CoTCoNet: An Optimized Coupled Transformer-Convolutional Network with an Adaptive Graph Reconstruction for Leukemia Detection [0.3573481101204926]
We propose an optimized Coupled Transformer Convolutional Network (CoTCoNet) framework for the classification of leukemia.
Our framework captures comprehensive global features and scalable spatial patterns, enabling the identification of complex and large-scale hematological features.
It achieves remarkable accuracy and F1-Score rates of 0.9894 and 0.9893, respectively.
arXiv Detail & Related papers (2024-10-11T13:31:28Z) - CAF-YOLO: A Robust Framework for Multi-Scale Lesion Detection in Biomedical Imagery [0.0682074616451595]
CAF-YOLO is a nimble yet robust method for medical object detection that leverages the strengths of convolutional neural networks (CNNs) and transformers.
ACFM module enhances the modeling of both global and local features, enabling the capture of long-term feature dependencies.
MSNN improves multi-scale information aggregation by extracting features across diverse scales.
arXiv Detail & Related papers (2024-08-04T01:44:44Z) - Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View [49.03501451546763]
We identify the importance of implicit correspondences across biological contexts for exploiting domain-invariant pathological composition.
We propose self-adaptive dynamic distillation to secure instance-aware trade-offs across different model constituents.
arXiv Detail & Related papers (2024-07-14T04:41:16Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - From augmented microscopy to the topological transformer: a new approach
in cell image analysis for Alzheimer's research [0.0]
Cell image analysis is crucial in Alzheimer's research to detect the presence of A$beta$ protein inhibiting cell function.
We first found Unet is most suitable in augmented microscopy by comparing performance in multi-class semantics segmentation.
We develop the augmented microscopy method to capture nuclei in a brightfield image and the transformer using Unet model to convert an input image into a sequence of topological information.
arXiv Detail & Related papers (2021-08-03T16:59:33Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Modality Attention and Sampling Enables Deep Learning with Heterogeneous
Marker Combinations in Fluorescence Microscopy [5.334932400937323]
Fluorescence microscopy allows for a detailed inspection of cells, cellular networks, and anatomical landmarks by staining with a variety of carefully-selected markers visualized as color channels.
Despite the success of deep learning methods in other vision applications, their potential for fluorescence image analysis remains underexploited.
We propose Marker Sampling and Excite, a neural network approach with a modality sampling strategy and a novel attention module.
arXiv Detail & Related papers (2020-08-27T21:57:07Z) - Neural Cellular Automata Manifold [84.08170531451006]
We show that the neural network architecture of the Neural Cellular Automata can be encapsulated in a larger NN.
This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image.
In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation.
arXiv Detail & Related papers (2020-06-22T11:41:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.