Group Feature Learning and Domain Adversarial Neural Network for aMCI
Diagnosis System Based on EEG
- URL: http://arxiv.org/abs/2105.06270v1
- Date: Wed, 28 Apr 2021 08:08:32 GMT
- Title: Group Feature Learning and Domain Adversarial Neural Network for aMCI
Diagnosis System Based on EEG
- Authors: Chen-Chen Fan, Haiqun Xie, Liang Peng, Hongjun Yang, Zhen-Liang Ni,
Guan'an Wang, Yan-Jie Zhou, Sheng Chen, Zhijie Fang, Shuyun Huang, Zeng-Guang
Hou
- Abstract summary: The diagnosis of mild cognitive impairment (MCI) is considered an effective means to prevent Alzheimer's disease (AD)
It is necessary to develop a robot diagnostic system to eliminate the influence of human factors and obtain a higher accuracy rate.
We propose a novel Group Feature Domain Adversarial Neural Network (GF-DANN) for amnestic MCI (aMCI) diagnosis.
- Score: 25.029697750437094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical diagnostic robot systems have been paid more and more attention due
to its objectivity and accuracy. The diagnosis of mild cognitive impairment
(MCI) is considered an effective means to prevent Alzheimer's disease (AD).
Doctors diagnose MCI based on various clinical examinations, which are
expensive and the diagnosis results rely on the knowledge of doctors.
Therefore, it is necessary to develop a robot diagnostic system to eliminate
the influence of human factors and obtain a higher accuracy rate. In this
paper, we propose a novel Group Feature Domain Adversarial Neural Network
(GF-DANN) for amnestic MCI (aMCI) diagnosis, which involves two important
modules. A Group Feature Extraction (GFE) module is proposed to reduce
individual differences by learning group-level features through adversarial
learning. A Dual Branch Domain Adaptation (DBDA) module is carefully designed
to reduce the distribution difference between the source and target domain in a
domain adaption way. On three types of data set, GF-DANN achieves the best
accuracy compared with classic machine learning and deep learning methods. On
the DMS data set, GF-DANN has obtained an accuracy rate of 89.47%, and the
sensitivity and specificity are 90% and 89%. In addition, by comparing three
EEG data collection paradigms, our results demonstrate that the DMS paradigm
has the potential to build an aMCI diagnose robot system.
Related papers
- MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.
Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.
We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - Toward Robust Early Detection of Alzheimer's Disease via an Integrated Multimodal Learning Approach [5.9091823080038814]
Alzheimer's Disease (AD) is a complex neurodegenerative disorder marked by memory loss, executive dysfunction, and personality changes.
This study introduces an advanced multimodal classification model that integrates clinical, cognitive, neuroimaging, and EEG data.
arXiv Detail & Related papers (2024-08-29T08:26:00Z) - Augmentation-based Unsupervised Cross-Domain Functional MRI Adaptation for Major Depressive Disorder Identification [23.639488571585044]
Major depressive disorder (MDD) is a common mental disorder that typically affects a person's mood, cognition, behavior, and physical health.
In this work, we propose a new augmentation-based unsupervised cross-domain fMRI adaptation framework for automatic diagnosis of MDD.
arXiv Detail & Related papers (2024-05-31T13:55:33Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
We propose an end-to-end deep learning approach for automated diagnosis of Alzheimer's disease (AD) and localization of important brain regions related to the disease from sMRI data.
Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI)
The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and 3D CNN methods.
arXiv Detail & Related papers (2021-07-28T07:19:00Z) - Unsupervised Domain Adaptation for Dysarthric Speech Detection via
Domain Adversarial Training and Mutual Information Minimization [52.82138296332476]
This paper makes a first attempt to formulate cross-domain Dysarthric speech detection (DSD) as an unsupervised domain adaptation problem.
We propose a multi-task learning strategy, including dysarthria presence classification (DPC), domain adversarial training ( DAT) and mutual information minimization (MIM)
Experiments show that the incorporation of UDA attains absolute increases of 22.2% and 20.0% respectively in utterance-level weighted average recall and speaker-level accuracy.
arXiv Detail & Related papers (2021-06-18T13:34:36Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease which destroys brain cells and causes loss to patient's memory.
In this paper, we have proposed a smart and accurate way of diagnosing AD based on a two-dimensional deep convolutional neural network (2D-DCNN) using imbalanced three-dimensional MRI dataset.
The model classifies MRI into three categories: AD, mild cognitive impairment, and normal control: and has achieved 99.89% classification accuracy with imbalanced classes.
arXiv Detail & Related papers (2021-01-08T06:51:08Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.