論文の概要: Episodic Transformer for Vision-and-Language Navigation
- arxiv url: http://arxiv.org/abs/2105.06453v1
- Date: Thu, 13 May 2021 17:51:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-14 14:10:21.683033
- Title: Episodic Transformer for Vision-and-Language Navigation
- Title(参考訳): 視覚・言語ナビゲーション用エピソディクストランスフォーマ
- Authors: Alexander Pashevich and Cordelia Schmid and Chen Sun
- Abstract要約: 本稿では,長時間のサブタスク処理と複雑なヒューマンインストラクションの理解という2つの課題に取り組むことに焦点を当てる。
エピソード変換器(E.T.)を提案する。
言語入力と視覚観察と行動の全エピソード履歴を符号化するマルチモーダルトランスフォーマーである。
我々のアプローチは、挑戦的なALFREDベンチマークに新たな技術状況を設定し、見つからないテストの分割で38.4%と8.5%のタスク成功率を達成した。
- 参考スコア(独自算出の注目度): 142.6236659368177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interaction and navigation defined by natural language instructions in
dynamic environments pose significant challenges for neural agents. This paper
focuses on addressing two challenges: handling long sequence of subtasks, and
understanding complex human instructions. We propose Episodic Transformer
(E.T.), a multimodal transformer that encodes language inputs and the full
episode history of visual observations and actions. To improve training, we
leverage synthetic instructions as an intermediate representation that
decouples understanding the visual appearance of an environment from the
variations of natural language instructions. We demonstrate that encoding the
history with a transformer is critical to solve compositional tasks, and that
pretraining and joint training with synthetic instructions further improve the
performance. Our approach sets a new state of the art on the challenging ALFRED
benchmark, achieving 38.4% and 8.5% task success rates on seen and unseen test
splits.
- Abstract(参考訳): 動的環境における自然言語命令によって定義された相互作用とナビゲーションは、ニューラルエージェントに重大な課題をもたらす。
本稿では,サブタスクの長いシーケンスを扱うこと,複雑なヒューマン命令を理解すること,という2つの課題に着目する。
エピソード変換器(E.T.)を提案する。
言語入力と視覚観察と行動の全エピソード履歴を符号化するマルチモーダルトランスフォーマーである。
学習を改善するために,自然言語指示のバリエーションから環境の視覚的な外観の理解を分離する中間表現として合成指示を用いる。
構成課題の解決にはトランスフォーマーによる履歴の符号化が不可欠であり,合成指導による事前訓練と合同訓練がさらに向上することを示す。
我々のアプローチは、挑戦的なALFREDベンチマークに新たな技術状況を設定し、見つからないテスト分割で38.4%と8.5%のタスク成功率を達成した。
関連論文リスト
- EC^2: Emergent Communication for Embodied Control [72.99894347257268]
エージェントはマルチモーダル・プレトレーニングを活用して、新しい環境でどのように振る舞うかを素早く学ぶ必要がある。
本稿では,数発のエンボディドコントロールのためのビデオ言語表現を事前学習するための新しいスキームであるEmergent Communication for Embodied Control (EC2)を提案する。
EC2は、タスク入力としてビデオとテキストの両方の従来のコントラスト学習手法を一貫して上回っている。
論文 参考訳(メタデータ) (2023-04-19T06:36:02Z) - Multimodal Vision Transformers with Forced Attention for Behavior
Analysis [0.0]
本稿では,強制注意(FAt)変換を導入し,入力エンコーディングや追加入力の利用に改良されたバックボーンを付加した。
FAt変換器は、パーソナリティ認識とボディランゲージ認識の2つの下流タスクに適用される。
Udiva v0.5, First Impressions v2, MPII Group Interaction データセットの最先端結果を得た。
論文 参考訳(メタデータ) (2022-12-07T21:56:50Z) - VLTinT: Visual-Linguistic Transformer-in-Transformer for Coherent Video
Paragraph Captioning [19.73126931526359]
ビデオパラグラフキャプションは、コヒーレントなストーリーテリングにおいて、複数の時間的イベント位置を持つ、トリミングされていないビデオのマルチ文記述を作成することを目的としている。
まず,視覚言語(VL)機能を提案する。提案するVL機能では,このシーンは (i) グローバルな視覚環境, (ii) ローカルな視覚メインエージェント, (iii) 言語シーン要素を含む3つのモードでモデル化される。
次に自動回帰変換器(TinT)を導入し、ビデオ内のイントラコンテンツとイントラコンテンツ間のセマンティックコヒーレンスを同時にキャプチャする。
論文 参考訳(メタデータ) (2022-11-28T07:39:20Z) - Instruction-Following Agents with Multimodal Transformer [95.70039658112873]
本稿では,視覚環境下での指示追従課題をロボットが解くための,シンプルで効果的なモデルを提案する。
本手法は,視覚観察と言語指示を符号化したマルチモーダルトランスフォーマーからなる。
この統一型トランスモデルは, シングルタスクとマルチタスクの両方で, 最先端のトレーニング済みあるいは訓練済みのスクラッチ手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-24T17:46:47Z) - A New Path: Scaling Vision-and-Language Navigation with Synthetic
Instructions and Imitation Learning [70.14372215250535]
VLN(Vision-and-Language Navigation)の最近の研究は、RLエージェントを訓練して、フォトリアリスティックな環境で自然言語ナビゲーション命令を実行する。
人間の指導データが不足し、訓練環境の多様性が限られていることを考えると、これらのエージェントは複雑な言語基盤と空間言語理解に苦慮している。
我々は、密集した360度パノラマで捉えた500以上の屋内環境を取り、これらのパノラマを通して航法軌道を構築し、各軌道に対して視覚的に接地された指示を生成する。
4.2Mの命令-軌道対のデータセットは、既存の人間の注釈付きデータセットよりも2桁大きい。
論文 参考訳(メタデータ) (2022-10-06T17:59:08Z) - Instruction-driven history-aware policies for robotic manipulations [82.25511767738224]
複数の入力を考慮に入れた統一型トランスフォーマー方式を提案する。
特に,我々のトランスフォーマーアーキテクチャは,(i)自然言語命令と(ii)多視点シーン観測を統合している。
RLBenchベンチマークと実世界のロボットを用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2022-09-11T16:28:25Z) - XDBERT: Distilling Visual Information to BERT from Cross-Modal Systems
to Improve Language Understanding [73.24847320536813]
本研究では,事前学習したマルチモーダル変換器から事前学習した言語エンコーダへの視覚情報の蒸留について検討する。
我々のフレームワークは,NLUの言語重み特性に適応するために学習目標を変更する一方で,視覚言語タスクにおけるクロスモーダルエンコーダの成功にインスパイアされている。
論文 参考訳(メタデータ) (2022-04-15T03:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。