論文の概要: Bias, Fairness, and Accountability with AI and ML Algorithms
- arxiv url: http://arxiv.org/abs/2105.06558v1
- Date: Thu, 13 May 2021 21:12:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-17 12:52:25.595863
- Title: Bias, Fairness, and Accountability with AI and ML Algorithms
- Title(参考訳): AIとMLアルゴリズムによるバイアス、公平性、説明責任
- Authors: Nengfeng Zhou, Zach Zhang, Vijayan N. Nair, Harsh Singhal, Jie Chen,
and Agus Sudjianto
- Abstract要約: データバイアスのタイプとソースを説明し、アルゴリズムの不公平性の性質について論じる。
続いて、文献における公正度指標のレビュー、それらの制限の議論、および偏見回避技術の説明が続きます。
- 参考スコア(独自算出の注目度): 4.21619702759265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of AI and ML algorithms has led to opportunities as well as
challenges. In this paper, we provide an overview of bias and fairness issues
that arise with the use of ML algorithms. We describe the types and sources of
data bias, and discuss the nature of algorithmic unfairness. This is followed
by a review of fairness metrics in the literature, discussion of their
limitations, and a description of de-biasing (or mitigation) techniques in the
model life cycle.
- Abstract(参考訳): AIとMLアルゴリズムの出現は、課題だけでなく機会にも繋がった。
本稿では,MLアルゴリズムを用いた場合のバイアス問題と公平性問題の概要について述べる。
データバイアスのタイプとソースを説明し、アルゴリズムの不公平性の性質について論じる。
これに続いて、文献における公正度メトリクスのレビュー、それらの制限に関する議論、モデルライフサイクルにおける非バイアス(または緩和)技術の説明が続く。
関連論文リスト
- Outlier Detection Bias Busted: Understanding Sources of Algorithmic Bias through Data-centric Factors [28.869581543676947]
unsupervised outlier detection (OD) は、金融、セキュリティ等に多くの応用がある。
この研究は、データ中心の異なる要因の下で検出モデルを監査することで、ODの不公平な源泉に光を当てることを目的としている。
この研究に基づくODアルゴリズムは、すべて公正な落とし穴を示すが、どの種類のデータバイアスがより影響を受けやすいかは異なる。
論文 参考訳(メタデータ) (2024-08-24T20:35:32Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Understanding Unfairness in Fraud Detection through Model and Data Bias
Interactions [4.159343412286401]
アルゴリズムの不公平性は、データ内のモデルとバイアスの間の相互作用に起因すると我々は主張する。
フェアネスブラインドMLアルゴリズムが示す公平さと正確さのトレードオフに関する仮説を、異なるデータバイアス設定下で検討する。
論文 参考訳(メタデータ) (2022-07-13T15:18:30Z) - Bias and unfairness in machine learning models: a systematic literature
review [43.55994393060723]
本研究の目的は,機械学習モデルにおけるバイアスと不公平性に関する既存の知識を検討することである。
The Systematic Literature Reviewによると、2017年から2022年にかけて、Scoops、IEEE Xplore、Web of Science、Google Scholarの知識ベースで40の論文が出版された。
論文 参考訳(メタデータ) (2022-02-16T16:27:00Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Individually Fair Gradient Boosting [86.1984206610373]
我々は、グラデーションブーストにおいて個人の公平性を強制するタスクを検討する。
アルゴリズムがグローバルに収束し、一般化することを示す。
また,アルゴリズムバイアスの影響を受けやすい3つのml問題に対するアルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2021-03-31T03:06:57Z) - Metrics and methods for a systematic comparison of fairness-aware
machine learning algorithms [0.0]
この研究はこの種の最も包括的なものである。
フェアネス、予測性能、キャリブレーション品質、28種類のモデリングパイプラインの速度を考慮に入れている。
また,フェアネスを意識したアルゴリズムは,予測力の低下を伴わずにフェアネスを誘導できることがわかった。
論文 参考訳(メタデータ) (2020-10-08T13:58:09Z) - Towards causal benchmarking of bias in face analysis algorithms [54.19499274513654]
顔分析アルゴリズムのアルゴリズムバイアスを測定する実験手法を開発した。
提案手法は,一致したサンプル画像の合成トランスクター'を生成することに基づく。
性別分類アルゴリズムの偏見を従来の観察法を用いて分析することにより,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-07-13T17:10:34Z) - Algorithmic Fairness [11.650381752104298]
正確であるだけでなく、客観的かつ公正なAIアルゴリズムを開発することが不可欠である。
近年の研究では、アルゴリズムによる意思決定は本質的に不公平である可能性が示されている。
論文 参考訳(メタデータ) (2020-01-21T19:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。