Online Algorithms and Policies Using Adaptive and Machine Learning
Approaches
- URL: http://arxiv.org/abs/2105.06577v7
- Date: Fri, 9 Jun 2023 21:10:28 GMT
- Title: Online Algorithms and Policies Using Adaptive and Machine Learning
Approaches
- Authors: Anuradha M. Annaswamy, Anubhav Guha, Yingnan Cui, Sunbochen Tang,
Peter A. Fisher, Joseph E. Gaudio
- Abstract summary: Two classes of nonlinear dynamic systems are considered, both of which are control-affine.
We propose a combination of a Reinforcement Learning based policy in the outer loop suitably chosen to ensure stability and optimality for the nominal dynamics.
In addition to establishing a stability guarantee with real-time control, the AC-RL controller is also shown to lead to parameter learning with persistent excitation.
- Score: 0.22020053359163297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers the problem of real-time control and learning in dynamic
systems subjected to parametric uncertainties. We propose a combination of a
Reinforcement Learning (RL) based policy in the outer loop suitably chosen to
ensure stability and optimality for the nominal dynamics, together with
Adaptive Control (AC) in the inner loop so that in real-time AC contracts the
closed-loop dynamics towards a stable trajectory traced out by RL. Two classes
of nonlinear dynamic systems are considered, both of which are control-affine.
The first class of dynamic systems utilizes equilibrium points %with expansion
forms around these points and a Lyapunov approach while second class of
nonlinear systems uses contraction theory. AC-RL controllers are proposed for
both classes of systems and shown to lead to online policies that guarantee
stability using a high-order tuner and accommodate parametric uncertainties and
magnitude limits on the input. In addition to establishing a stability
guarantee with real-time control, the AC-RL controller is also shown to lead to
parameter learning with persistent excitation for the first class of systems.
Numerical validations of all algorithms are carried out using a quadrotor
landing task on a moving platform.
Related papers
- Stochastic Reinforcement Learning with Stability Guarantees for Control of Unknown Nonlinear Systems [6.571209126567701]
We propose a reinforcement learning algorithm that stabilizes the system by learning a local linear representation ofthe dynamics.
We demonstrate the effectiveness of our algorithm on several challenging high-dimensional dynamical systems.
arXiv Detail & Related papers (2024-09-12T20:07:54Z) - Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
We tackle the performance-boosting problem with closed-loop stability guarantees.
Our methods enable learning over arbitrarily deep neural network classes of performance-boosting controllers for stable nonlinear systems.
arXiv Detail & Related papers (2024-05-01T21:11:29Z) - Learning Over Contracting and Lipschitz Closed-Loops for
Partially-Observed Nonlinear Systems (Extended Version) [1.2430809884830318]
This paper presents a policy parameterization for learning-based control on nonlinear, partially-observed dynamical systems.
We prove that the resulting Youla-REN parameterization automatically satisfies stability (contraction) and user-tunable robustness (Lipschitz) conditions.
We find that the Youla-REN performs similarly to existing learning-based and optimal control methods while also ensuring stability and exhibiting improved robustness to adversarial disturbances.
arXiv Detail & Related papers (2023-04-12T23:55:56Z) - Best of Both Worlds in Online Control: Competitive Ratio and Policy
Regret [61.59646565655169]
We show that several recently proposed online control algorithms achieve the best of both worlds: sublinear regret vs. the best DAC policy selected in hindsight.
We conclude that sublinear regret vs. the optimal competitive policy is attainable when the linear dynamical system is unknown.
arXiv Detail & Related papers (2022-11-21T07:29:08Z) - Actor-Critic based Improper Reinforcement Learning [61.430513757337486]
We consider an improper reinforcement learning setting where a learner is given $M$ base controllers for an unknown Markov decision process.
We propose two algorithms: (1) a Policy Gradient-based approach; and (2) an algorithm that can switch between a simple Actor-Critic scheme and a Natural Actor-Critic scheme.
arXiv Detail & Related papers (2022-07-19T05:55:02Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
We propose a model-based reinforcement learning framework with formal stability guarantees.
The proposed method learns the system dynamics up to a confidence interval using feature representation.
We show that KCRL is guaranteed to learn a stabilizing policy in a finite number of interactions with the underlying unknown system.
arXiv Detail & Related papers (2022-06-03T17:27:04Z) - Non-stationary Online Learning with Memory and Non-stochastic Control [71.14503310914799]
We study the problem of Online Convex Optimization (OCO) with memory, which allows loss functions to depend on past decisions.
In this paper, we introduce dynamic policy regret as the performance measure to design algorithms robust to non-stationary environments.
We propose a novel algorithm for OCO with memory that provably enjoys an optimal dynamic policy regret in terms of time horizon, non-stationarity measure, and memory length.
arXiv Detail & Related papers (2021-02-07T09:45:15Z) - Reinforcement Learning Control of Constrained Dynamic Systems with
Uniformly Ultimate Boundedness Stability Guarantee [12.368097742148128]
Reinforcement learning (RL) is promising for complicated nonlinear control problems.
The data-based learning approach is notorious for not guaranteeing stability, which is the most fundamental property for any control system.
In this paper, the classic Lyapunov's method is explored to analyze the uniformly ultimate boundedness stability (UUB) solely based on data.
arXiv Detail & Related papers (2020-11-13T12:41:56Z) - Actor-Critic Reinforcement Learning for Control with Stability Guarantee [9.400585561458712]
Reinforcement Learning (RL) and its integration with deep learning have achieved impressive performance in various robotic control tasks.
However, stability is not guaranteed in model-free RL by solely using data.
We propose an actor-critic RL framework for control which can guarantee closed-loop stability by employing the classic Lyapunov's method in control theory.
arXiv Detail & Related papers (2020-04-29T16:14:30Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.