論文の概要: Confidence-guided Adaptive Gate and Dual Differential Enhancement for
Video Salient Object Detection
- arxiv url: http://arxiv.org/abs/2105.06714v1
- Date: Fri, 14 May 2021 08:49:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-17 12:42:55.840760
- Title: Confidence-guided Adaptive Gate and Dual Differential Enhancement for
Video Salient Object Detection
- Title(参考訳): 信頼誘導型適応ゲートと2値差分法による映像有向物体検出
- Authors: Peijia Chen, Jianhuang Lai, Guangcong Wang, Huajun Zhou
- Abstract要約: ビデオサルエント物体検出(VSOD)は、ビデオシーケンスに隠された空間的手がかりと時間的手がかりの両方を活用することにより、最も魅力的な物体の探索と分割を目的としている。
信頼性誘導適応ゲート(CAG)モジュールとデュアルディファレンシャルエンハンスメント(DDE)モジュールを含む空間的および時間的キューから利用可能な情報を適応的にキャプチャする新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 47.68968739917077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video salient object detection (VSOD) aims to locate and segment the most
attractive object by exploiting both spatial cues and temporal cues hidden in
video sequences. However, spatial and temporal cues are often unreliable in
real-world scenarios, such as low-contrast foreground, fast motion, and
multiple moving objects. To address these problems, we propose a new framework
to adaptively capture available information from spatial and temporal cues,
which contains Confidence-guided Adaptive Gate (CAG) modules and Dual
Differential Enhancement (DDE) modules. For both RGB features and optical flow
features, CAG estimates confidence scores supervised by the IoU between
predictions and the ground truths to re-calibrate the information with a gate
mechanism. DDE captures the differential feature representation to enrich the
spatial and temporal information and generate the fused features. Experimental
results on four widely used datasets demonstrate the effectiveness of the
proposed method against thirteen state-of-the-art methods.
- Abstract(参考訳): ビデオサルエント物体検出(VSOD)は、ビデオシーケンスに隠された空間的手がかりと時間的手がかりの両方を活用することにより、最も魅力的な物体の探索と分割を目的としている。
しかし、空間的および時間的手がかりは、しばしば、低コントラストの前景、速い動き、複数の動く物体など、現実世界のシナリオでは信頼できない。
このような問題に対処するために、信頼誘導適応ゲート(CAG)モジュールとDDEモジュールを含む空間的および時間的手がかりから利用可能な情報を適応的にキャプチャする新しいフレームワークを提案する。
RGBの特徴と光フローの特徴の両方について、CAGはIoUが監督する信頼度スコアを予測と地上の真実の間に推定し、ゲート機構で情報を再分類する。
ddeは微分特徴表現を取り込み、空間的および時間的情報を豊かにし、融合特徴を生成する。
4つの広く利用されているデータセットの実験結果から,提案手法の有効性が示された。
関連論文リスト
- Future Does Matter: Boosting 3D Object Detection with Temporal Motion Estimation in Point Cloud Sequences [25.74000325019015]
クロスフレーム動作予測情報を用いた時空間特徴学習を容易にするために,新しいLiDAR 3Dオブジェクト検出フレームワークLiSTMを導入する。
我々は,本フレームワークが優れた3次元検出性能を実現することを示すため,アグリゲーションとnuScenesデータセットの実験を行った。
論文 参考訳(メタデータ) (2024-09-06T16:29:04Z) - Patch Spatio-Temporal Relation Prediction for Video Anomaly Detection [19.643936110623653]
ビデオ異常検出(VAD)は、特定のコンテキストと時間枠内の異常を識別することを目的としている。
近年の深層学習に基づくVADモデルは,高解像度フレームの生成によって有望な結果を示した。
本稿では, パッチ間関係予測タスクを通じて, VADの自己教師型学習手法を提案する。
論文 参考訳(メタデータ) (2024-03-28T03:07:16Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
本稿では,自律運転における3次元物体検出のための3次元点検出モデルであるShift-SSDを提案する。
我々は、ポイントベース検出器の表現能力を解き放つために、興味深いクロスクラスタシフト操作を導入する。
我々は、KITTI、ランタイム、nuScenesデータセットに関する広範な実験を行い、Shift-SSDの最先端性能を実証した。
論文 参考訳(メタデータ) (2024-03-10T10:36:32Z) - Local-Global Temporal Difference Learning for Satellite Video
Super-Resolution [55.69322525367221]
本稿では,時間的差分を効果的かつ効果的な時間的補償に利用することを提案する。
フレーム内における局所的・大域的時間的情報を完全に活用するために,短期・長期的時間的相違を体系的にモデル化した。
5つの主流ビデオ衛星に対して行われた厳密な客観的および主観的評価は、我々の手法が最先端のアプローチに対して好適に機能することを実証している。
論文 参考訳(メタデータ) (2023-04-10T07:04:40Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Motion-aware Memory Network for Fast Video Salient Object Detection [15.967509480432266]
我々は、隣接するフレームから現在のフレームの有用な時間情報をVSODの時間枝として抽出する時空間メモリ(STM)ベースのネットワークを設計する。
符号化段階では、電流とその隣接するフレームから高次特徴を用いて高次時間特徴を生成する。
復号化段階では,空間的および時間的分岐に対する効果的な融合戦略を提案する。
提案モデルでは,光学フローなどの前処理を必要とせず,推定時に100FPS近い速度に達することができる。
論文 参考訳(メタデータ) (2022-08-01T15:56:19Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
時間情報と空間情報のより効果的な融合のための新しい動的時空間ネットワーク(DSNet)を提案する。
提案手法は最先端アルゴリズムよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-09T06:42:30Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。