Efficient Spiking Neural Networks with Radix Encoding
- URL: http://arxiv.org/abs/2105.06943v2
- Date: Thu, 2 Nov 2023 15:10:24 GMT
- Title: Efficient Spiking Neural Networks with Radix Encoding
- Authors: Zhehui Wang, Xiaozhe Gu, Rick Goh, Joey Tianyi Zhou, Tao Luo
- Abstract summary: Spiking neural networks (SNNs) have advantages in latency and energy efficiency over traditional artificial neural networks (ANNs)
In this paper, we propose a radix encoded SNN with ultra-short spike trains.
Experiments show that our method demonstrates 25X speedup and 1.1% increment on accuracy, compared with the state-of-the-art work on VGG-16 network architecture and CIFAR-10 dataset.
- Score: 35.79325964767678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) have advantages in latency and energy
efficiency over traditional artificial neural networks (ANNs) due to its
event-driven computation mechanism and replacement of energy-consuming weight
multiplications with additions. However, in order to reach accuracy of its ANN
counterpart, it usually requires long spike trains to ensure the accuracy.
Traditionally, a spike train needs around one thousand time steps to approach
similar accuracy as its ANN counterpart. This offsets the computation
efficiency brought by SNNs because longer spike trains mean a larger number of
operations and longer latency. In this paper, we propose a radix encoded SNN
with ultra-short spike trains. In the new model, the spike train takes less
than ten time steps. Experiments show that our method demonstrates 25X speedup
and 1.1% increment on accuracy, compared with the state-of-the-art work on
VGG-16 network architecture and CIFAR-10 dataset.
Related papers
- Scaling Spike-driven Transformer with Efficient Spike Firing Approximation Training [17.193023656793464]
The ambition of brain-inspired Spiking Neural Networks (SNNs) is to become a low-power alternative to traditional Artificial Neural Networks (ANNs)
This work addresses two major challenges in realizing this vision: the performance gap between SNNs and ANNs, and the high training costs of SNNs.
We identify intrinsic flaws in spiking neurons caused by binary firing mechanisms and propose a Spike Firing Approximation (SFA) method using integer training and spike-driven inference.
arXiv Detail & Related papers (2024-11-25T03:05:41Z) - Bridging the Gap between ANNs and SNNs by Calibrating Offset Spikes [19.85338979292052]
Spiking Neural Networks (SNNs) have attracted great attention due to their distinctive characteristics of low power consumption and temporal information processing.
ANN-SNN conversion, as the most commonly used training method for applying SNNs, can ensure that converted SNNs achieve comparable performance to ANNs on large-scale datasets.
In this paper, instead of evaluating different conversion errors and then eliminating these errors, we define an offset spike to measure the degree of deviation between actual and desired SNN firing rates.
arXiv Detail & Related papers (2023-02-21T14:10:56Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
Spiking neural networks (SNNs) with event-based computation are promising brain-inspired models for energy-efficient applications on neuromorphic hardware.
We study spike-based implicit differentiation on the equilibrium state (SPIDE) that extends the recently proposed training method.
arXiv Detail & Related papers (2023-02-01T04:22:59Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
Spiking neural networks (SNNs) are shown to be more biologically plausible and energy efficient than their predecessors.
In this paper, we put forward a generalized learning rule, termed Local Tandem Learning (LTL)
We demonstrate rapid network convergence within five training epochs on the CIFAR-10 dataset while having low computational complexity.
arXiv Detail & Related papers (2022-10-10T10:05:00Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
Spiking neural networks (SNNs) operate via binary spikes distributed over time.
SOTA training strategies for SNNs involve conversion from a non-spiking deep neural network (DNN)
We propose a new training algorithm that accurately captures these distributions, minimizing the error between the DNN and converted SNN.
arXiv Detail & Related papers (2021-12-22T18:47:45Z) - Training Energy-Efficient Deep Spiking Neural Networks with Single-Spike
Hybrid Input Encoding [5.725845886457027]
Spiking Neural Networks (SNNs) provide higher computational efficiency in event driven neuromorphic hardware.
SNNs suffer from high inference latency, resulting from inefficient input encoding and training techniques.
This paper presents a training framework for low-latency energy-efficient SNNs.
arXiv Detail & Related papers (2021-07-26T06:16:40Z) - Kernel Based Progressive Distillation for Adder Neural Networks [71.731127378807]
Adder Neural Networks (ANNs) which only contain additions bring us a new way of developing deep neural networks with low energy consumption.
There is an accuracy drop when replacing all convolution filters by adder filters.
We present a novel method for further improving the performance of ANNs without increasing the trainable parameters.
arXiv Detail & Related papers (2020-09-28T03:29:19Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z) - Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
Timing Dependent Backpropagation [10.972663738092063]
Spiking Neural Networks (SNNs) operate with asynchronous discrete events (or spikes)
We present a computationally-efficient training technique for deep SNNs.
We achieve top-1 accuracy of 65.19% for ImageNet dataset on SNN with 250 time steps, which is 10X faster compared to converted SNNs with similar accuracy.
arXiv Detail & Related papers (2020-05-04T19:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.