Scaling Spike-driven Transformer with Efficient Spike Firing Approximation Training
- URL: http://arxiv.org/abs/2411.16061v1
- Date: Mon, 25 Nov 2024 03:05:41 GMT
- Title: Scaling Spike-driven Transformer with Efficient Spike Firing Approximation Training
- Authors: Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao, Luziwei Leng, Bo Xu, Guoqi Li,
- Abstract summary: The ambition of brain-inspired Spiking Neural Networks (SNNs) is to become a low-power alternative to traditional Artificial Neural Networks (ANNs)
This work addresses two major challenges in realizing this vision: the performance gap between SNNs and ANNs, and the high training costs of SNNs.
We identify intrinsic flaws in spiking neurons caused by binary firing mechanisms and propose a Spike Firing Approximation (SFA) method using integer training and spike-driven inference.
- Score: 17.193023656793464
- License:
- Abstract: The ambition of brain-inspired Spiking Neural Networks (SNNs) is to become a low-power alternative to traditional Artificial Neural Networks (ANNs). This work addresses two major challenges in realizing this vision: the performance gap between SNNs and ANNs, and the high training costs of SNNs. We identify intrinsic flaws in spiking neurons caused by binary firing mechanisms and propose a Spike Firing Approximation (SFA) method using integer training and spike-driven inference. This optimizes the spike firing pattern of spiking neurons, enhancing efficient training, reducing power consumption, improving performance, enabling easier scaling, and better utilizing neuromorphic chips. We also develop an efficient spike-driven Transformer architecture and a spike-masked autoencoder to prevent performance degradation during SNN scaling. On ImageNet-1k, we achieve state-of-the-art top-1 accuracy of 78.5\%, 79.8\%, 84.0\%, and 86.2\% with models containing 10M, 19M, 83M, and 173M parameters, respectively. For instance, the 10M model outperforms the best existing SNN by 7.2\% on ImageNet, with training time acceleration and inference energy efficiency improved by 4.5$\times$ and 3.9$\times$, respectively. We validate the effectiveness and efficiency of the proposed method across various tasks, including object detection, semantic segmentation, and neuromorphic vision tasks. This work enables SNNs to match ANN performance while maintaining the low-power advantage, marking a significant step towards SNNs as a general visual backbone. Code is available at https://github.com/BICLab/Spike-Driven-Transformer-V3.
Related papers
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection [15.154553304520164]
Spiking Neural Networks (SNNs) have bio-plaus and low-power advantages over Artificial Neural Networks (ANNs)
In this work, we focus on bridging the performance gap between ANNs and SNNs on object detection.
We design a SpikeYOLO architecture to solve this problem by simplifying the vanilla YOLO and incorporating meta SNN blocks.
arXiv Detail & Related papers (2024-07-30T10:04:16Z) - Training a General Spiking Neural Network with Improved Efficiency and
Minimum Latency [4.503744528661997]
Spiking Neural Networks (SNNs) operate in an event-driven manner and employ binary spike representation.
This paper proposes a general training framework that enhances feature learning and activation efficiency within a limited time step.
arXiv Detail & Related papers (2024-01-05T09:54:44Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Neurogenesis Dynamics-inspired Spiking Neural Network Training
Acceleration [25.37391055865312]
Spiking Neural Networks (SNNs) have attracted significant attention for their ability to provide extremely energy-efficient machine intelligence.
We propose a Neurogenesis Dynamics-inspired Spiking Neural Network training acceleration framework, NDSNN.
Our framework is computational efficient and trains a model from scratch with dynamic sparsity without sacrificing model fidelity.
arXiv Detail & Related papers (2023-04-24T15:54:22Z) - Attention Spiking Neural Networks [32.591900260554326]
We study the effect of attention mechanisms in spiking neural networks (SNNs)
New attention SNN architecture with end-to-end training called "MA-SNN" is proposed.
Experiments are conducted in event-based DVS128 Gesture/Gait action recognition and ImageNet-1k image classification.
arXiv Detail & Related papers (2022-09-28T09:00:45Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
Spiking neural networks are efficient computation models for low-power environments.
We propose a SNN-to-ANN (SNN2ANN) framework to train the SNN in a fast and memory-efficient way.
Experiment results show that our SNN2ANN-based models perform well on the benchmark datasets.
arXiv Detail & Related papers (2022-06-19T16:52:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.