A causal learning framework for the analysis and interpretation of
COVID-19 clinical data
- URL: http://arxiv.org/abs/2105.06998v1
- Date: Fri, 14 May 2021 15:58:18 GMT
- Title: A causal learning framework for the analysis and interpretation of
COVID-19 clinical data
- Authors: Elisa Ferrari, Luna Gargani, Greta Barbieri, Lorenzo Ghiadoni,
Francesco Faita, Davide Bacciu
- Abstract summary: The workflow consists in a multi-step approach that goes from identifying the main causes of patient's outcome through BSL.
We evaluate our approach on a feature-rich COVID-19 dataset, showing that the proposed framework provides a schematic overview of the multi-factorial processes that jointly contribute to the outcome.
Our approach yields to a highly interpretable tool correctly predicting the outcome of 85% of subjects based exclusively on 3 features.
- Score: 7.256237785391623
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a workflow for clinical data analysis that relies on Bayesian
Structure Learning (BSL), an unsupervised learning approach, robust to noise
and biases, that allows to incorporate prior medical knowledge into the
learning process and that provides explainable results in the form of a graph
showing the causal connections among the analyzed features. The workflow
consists in a multi-step approach that goes from identifying the main causes of
patient's outcome through BSL, to the realization of a tool suitable for
clinical practice, based on a Binary Decision Tree (BDT), to recognize patients
at high-risk with information available already at hospital admission time. We
evaluate our approach on a feature-rich COVID-19 dataset, showing that the
proposed framework provides a schematic overview of the multi-factorial
processes that jointly contribute to the outcome. We discuss how these
computational findings are confirmed by current understanding of the COVID-19
pathogenesis. Further, our approach yields to a highly interpretable tool
correctly predicting the outcome of 85% of subjects based exclusively on 3
features: age, a previous history of chronic obstructive pulmonary disease and
the PaO2/FiO2 ratio at the time of arrival to the hospital. The inclusion of
additional information from 4 routine blood tests (Creatinine, Glucose, pO2 and
Sodium) increases predictive accuracy to 94.5%.
Related papers
- Enhancing Readmission Prediction with Deep Learning: Extracting Biomedical Concepts from Clinical Texts [0.26813152817733554]
This study focuses on predicting patient readmission within less than 30 days using text mining techniques.
Various machine learning and deep learning methods were employed to develop a classification model for this purpose.
arXiv Detail & Related papers (2024-03-12T09:03:44Z) - Fusion of Diffusion Weighted MRI and Clinical Data for Predicting
Functional Outcome after Acute Ischemic Stroke with Deep Contrastive Learning [1.4149937986822438]
Stroke is a common disabling neurological condition that affects about one-quarter of the adult population over age 25.
Our proposed fusion model achieves 0.87, 0.80 and 80.45% for AUC, F1-score and accuracy, respectively.
arXiv Detail & Related papers (2024-02-16T18:51:42Z) - Assessing the impact of emergency department short stay units using
length-of-stay prediction and discrete event simulation [1.0822676139724565]
We aim to build a decision support system that predicts hospital length-of-stay for patients admitted to general internal medicine from the emergency department.
We conduct an exploratory data analysis and employ feature selection methods to identify the attributes that result in the best predictive performance.
arXiv Detail & Related papers (2023-08-04T22:26:02Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Mortality Prediction with Adaptive Feature Importance Recalibration for
Peritoneal Dialysis Patients: a deep-learning-based study on a real-world
longitudinal follow-up dataset [19.7915762858399]
Peritoneal Dialysis (PD) is one of the most widely used life-supporting therapies for patients with End-Stage Renal Disease (ESRD)
Here, our objective is to develop a deep learning model for a real-time, individualized, and interpretable mortality prediction model - AICare.
This study has collected 13,091 clinical follow-up visits and demographic data of 656 PD patients.
arXiv Detail & Related papers (2023-01-17T13:17:54Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
Clinical trials face uncertain outcomes due to issues with efficacy, safety, or problems with patient recruitment.
In this paper, we propose Hierarchical INteraction Network (HINT) for more general, clinical trial outcome predictions.
arXiv Detail & Related papers (2021-02-08T15:09:07Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Classification supporting COVID-19 diagnostics based on patient survey
data [82.41449972618423]
logistic regression and XGBoost classifiers, that allow for effective screening of patients for COVID-19 were generated.
The obtained classification models provided the basis for the DECODE service (decode.polsl.pl), which can serve as support in screening patients with COVID-19 disease.
This data set consists of more than 3,000 examples is based on questionnaires collected at a hospital in Poland.
arXiv Detail & Related papers (2020-11-24T17:44:01Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.