Bridging Stepwise Lab-Informed Pretraining and Knowledge-Guided Learning for Diagnostic Reasoning
- URL: http://arxiv.org/abs/2410.19955v2
- Date: Tue, 15 Apr 2025 23:36:25 GMT
- Title: Bridging Stepwise Lab-Informed Pretraining and Knowledge-Guided Learning for Diagnostic Reasoning
- Authors: Pengfei Hu, Chang Lu, Fei Wang, Yue Ning,
- Abstract summary: We propose a dual-expertise framework that combines two complementary sources of information.<n>For external knowledge, we construct a Diagnosis Knowledge Graph (KG) that encodes both hierarchical language and semantic relations enriched by large models.<n>We introduce a lab-informed proxy task that guides the model to follow a clinically consistent stepwise reasoning process based on lab test signals.
- Score: 20.369746122143063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the growing use of Electronic Health Records (EHR) for AI-assisted diagnosis prediction, most data-driven models struggle to incorporate clinically meaningful medical knowledge. They often rely on limited ontologies, lacking structured reasoning capabilities and comprehensive coverage. This raises an important research question: Will medical knowledge improve predictive models to support stepwise clinical reasoning as performed by human doctors? To address this problem, we propose DuaLK, a dual-expertise framework that combines two complementary sources of information. For external knowledge, we construct a Diagnosis Knowledge Graph (KG) that encodes both hierarchical and semantic relations enriched by large language models (LLM). To align with patient data, we further introduce a lab-informed proxy task that guides the model to follow a clinically consistent, stepwise reasoning process based on lab test signals. Experimental results on two public EHR datasets demonstrate that DuaLK consistently outperforms existing baselines across four clinical prediction tasks. These findings highlight the potential of combining structured medical knowledge with individual-level clinical signals to achieve more accurate and interpretable diagnostic predictions. The source code is publicly available on https://github.com/humphreyhuu/DuaLK.
Related papers
- Citrus: Leveraging Expert Cognitive Pathways in a Medical Language Model for Advanced Medical Decision Support [22.40301339126307]
We introduce Citrus, a medical language model that bridges the gap between clinical expertise and AI reasoning.
The model is trained on a large corpus of simulated expert disease reasoning data.
We release the last-stage training data, including a custom-built medical diagnostic dialogue dataset.
arXiv Detail & Related papers (2025-02-25T15:05:12Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.
We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.
We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
This study presents a LLM-based diagnostic system that enhances planning capabilities by emulating doctors.
By utilizing real patient electronic medical record data, we constructed simulated dialogues between virtual patients and doctors.
arXiv Detail & Related papers (2024-04-04T06:16:35Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
We propose NECHO, a novel medical code-centric multimodal contrastive EHR learning framework with hierarchical regularisation.
First, we integrate multifaceted information encompassing medical codes, demographics, and clinical notes using a tailored network design.
We also regularise modality-specific encoders using a parental level information in medical ontology to learn hierarchical structure of EHR data.
arXiv Detail & Related papers (2024-01-22T01:58:32Z) - Enabling Collaborative Clinical Diagnosis of Infectious Keratitis by
Integrating Expert Knowledge and Interpretable Data-driven Intelligence [28.144658552047975]
This study investigates the performance, interpretability, and clinical utility of knowledge-guided diagnosis model (KGDM) in the diagnosis of infectious keratitis (IK)
The diagnostic odds ratios (DOR) of the interpreted AI-based biomarkers are effective, ranging from 3.011 to 35.233.
The participants with collaboration achieved a performance exceeding that of both humans and AI.
arXiv Detail & Related papers (2024-01-14T02:10:54Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language
Processing [5.022185333260402]
Diagnostic Reasoning Benchmarks, DR.BENCH, is a new benchmark for developing and evaluating cNLP models with clinical diagnostic reasoning ability.
DR.BENCH is the first clinical suite of tasks designed to be a natural language generation framework to evaluate pre-trained language models.
arXiv Detail & Related papers (2022-09-29T16:05:53Z) - Modeling electronic health record data using a knowledge-graph-embedded
topic model [6.170782354287972]
We present KG-ETM, an end-to-end knowledge graph-based multimodal embedded topic model.
KG-ETM distills latent disease topics from EHR data by learning the embedding from the medical knowledge graphs.
Our model is also able to discover interpretable and accurate patient representations for patient stratification and drug recommendations.
arXiv Detail & Related papers (2022-06-03T07:58:17Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - A causal learning framework for the analysis and interpretation of
COVID-19 clinical data [7.256237785391623]
The workflow consists in a multi-step approach that goes from identifying the main causes of patient's outcome through BSL.
We evaluate our approach on a feature-rich COVID-19 dataset, showing that the proposed framework provides a schematic overview of the multi-factorial processes that jointly contribute to the outcome.
Our approach yields to a highly interpretable tool correctly predicting the outcome of 85% of subjects based exclusively on 3 features.
arXiv Detail & Related papers (2021-05-14T15:58:18Z) - IA-GCN: Interpretable Attention based Graph Convolutional Network for
Disease prediction [47.999621481852266]
We propose an interpretable graph learning-based model which interprets the clinical relevance of the input features towards the task.
In a clinical scenario, such a model can assist the clinical experts in better decision-making for diagnosis and treatment planning.
Our proposed model shows superior performance with respect to compared methods with an increase in an average accuracy of 3.2% for Tadpole, 1.6% for UKBB Gender, and 2% for the UKBB Age prediction task.
arXiv Detail & Related papers (2021-03-29T13:04:02Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - CovidCare: Transferring Knowledge from Existing EMR to Emerging Epidemic
for Interpretable Prognosis [20.701122594508675]
We propose a deep-learning-based approach, CovidCare, to enhance the prognosis for inpatients with emerging infectious diseases.
CovidCare learns to embed the COVID-19-related medical features based on massive existing EMR data via transfer learning.
We conduct the length of stay prediction experiments for patients on a real-world COVID-19 dataset.
arXiv Detail & Related papers (2020-07-17T09:20:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.