論文の概要: Analyzing Images for Music Recommendation
- arxiv url: http://arxiv.org/abs/2105.07135v1
- Date: Sat, 15 May 2021 04:14:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 14:28:38.671293
- Title: Analyzing Images for Music Recommendation
- Title(参考訳): 音楽レコメンデーションのための画像解析
- Authors: Anant Baijal, Vivek Agarwal and Danny Hyun
- Abstract要約: 提案する画像解析方法は、写真画像とは異なるアートワーク画像を処理する。
各画像および推奨音楽ペアの主観評価から得られた平均意見スコア(mos)は,提案手法の有効性を裏付けるものである。
- 参考スコア(独自算出の注目度): 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Experiencing images with suitable music can greatly enrich the overall user
experience. The proposed image analysis method treats an artwork image
differently from a photograph image. Automatic image classification is
performed using deep-learning based models. An illustrative analysis showcasing
the ability of our deep-models to inherently learn and utilize perceptually
relevant features when classifying artworks is also presented. The Mean Opinion
Score (MOS) obtained from subjective assessments of the respective image and
recommended music pairs supports the effectiveness of our approach.
- Abstract(参考訳): 適切な音楽でイメージを体験することで、ユーザエクスペリエンス全体が大幅に向上する。
提案する画像解析方法は、写真画像とは異なるアートワーク画像を処理する。
ディープラーニングに基づくモデルを用いて,画像の自動分類を行う。
美術品を分類する際の知覚的特徴を自然に学習し活用する深層モデルの能力を示すイラストレーション分析も提示する。
各画像および推奨音楽ペアの主観評価から得られた平均意見スコア(mos)は,提案手法の有効性を裏付けるものである。
関連論文リスト
- Impressions: Understanding Visual Semiotics and Aesthetic Impact [66.40617566253404]
画像のセミオティックスを調べるための新しいデータセットであるImpressionsを提示する。
既存のマルチモーダル画像キャプションと条件付き生成モデルは、画像に対する可視的応答をシミュレートするのに苦労していることを示す。
このデータセットは、微調整と少数ショット適応により、画像の印象や美的評価をモデル化する能力を大幅に改善する。
論文 参考訳(メタデータ) (2023-10-27T04:30:18Z) - Image Aesthetics Assessment via Learnable Queries [59.313054821874864]
本稿では,IAA-LQを用いた画像美学評価手法を提案する。
フリーズされた画像エンコーダから得られた事前訓練された画像特徴から、学習可能なクエリを適応して美的特徴を抽出する。
実世界のデータに関する実験では、IAA-LQの利点が示され、SRCCとPLCCでそれぞれ2.2%、そして2.1%が最先端の手法に勝っている。
論文 参考訳(メタデータ) (2023-09-06T09:42:16Z) - ARTxAI: Explainable Artificial Intelligence Curates Deep Representation
Learning for Artistic Images using Fuzzy Techniques [11.286457041998569]
芸術的画像分類における異なる課題から得られる特徴が、類似した性質の他の課題を解決するのにどのように適しているかを示す。
本稿では、画像の既知の視覚特性をディープラーニングモデルで用いる特徴にマッピングする、説明可能な人工知能手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T13:15:13Z) - VILA: Learning Image Aesthetics from User Comments with Vision-Language
Pretraining [53.470662123170555]
ユーザからのコメントから画像美学を学習し、マルチモーダルな美学表現を学習するための視覚言語事前学習手法を提案する。
具体的には、コントラスト的および生成的目的を用いて、画像テキストエンコーダ-デコーダモデルを事前訓練し、人間のラベルなしでリッチで汎用的な美的意味学を学習する。
以上の結果から,AVA-Captionsデータセットを用いた画像の美的字幕化において,事前学習した美的視覚言語モデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-03-24T23:57:28Z) - Leveraging Computer Vision Application in Visual Arts: A Case Study on
the Use of Residual Neural Network to Classify and Analyze Baroque Paintings [0.0]
本稿ではヨハン・クペツキーの「画家シャルル・ブルニの肖像」の分類に焦点をあてる。
残余ネットワークトレーニングで抽出した特徴は,オンラインアートコレクションの検索システム内での画像検索に有用であることを示す。
論文 参考訳(メタデータ) (2022-10-27T10:15:36Z) - Exploring CLIP for Assessing the Look and Feel of Images [87.97623543523858]
ゼロショット方式で画像の品質知覚(ルック)と抽象知覚(フィール)の両方を評価するために,コントラスト言語-画像事前学習(CLIP)モデルを導入する。
以上の結果から,CLIPは知覚的評価によく適合する有意義な先行情報を捉えることが示唆された。
論文 参考訳(メタデータ) (2022-07-25T17:58:16Z) - Composition and Style Attributes Guided Image Aesthetic Assessment [66.60253358722538]
本稿では,画像の美学を自動予測する手法を提案する。
提案ネットワークには,意味的特徴抽出のための事前学習ネットワーク(Backbone)と,画像属性の予測にBackbone機能に依存するマルチレイヤパーセプトロン(MLP)ネットワーク(AttributeNet)が含まれる。
画像が与えられた場合、提案するマルチネットワークは、スタイルと構成属性、および美的スコア分布を予測できる。
論文 参考訳(メタデータ) (2021-11-08T17:16:38Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
劣化参照IQA(DR-IQA)という実用的な解を提案する。
DR-IQAはIRモデルの入力、劣化したイメージを参照として利用する。
私たちの結果は、フル参照設定のパフォーマンスに近いものもあります。
論文 参考訳(メタデータ) (2021-08-18T02:35:08Z) - A Survey of Hand Crafted and Deep Learning Methods for Image Aesthetic
Assessment [2.9005223064604078]
本稿では,最近の自動画像美学評価技術について文献的考察を行う。
伝統的なハンドクラフトとディープラーニングベースのアプローチが多数レビューされています。
論文 参考訳(メタデータ) (2021-03-22T07:00:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。