Quantum Light Detection and Ranging
- URL: http://arxiv.org/abs/2105.07169v1
- Date: Sat, 15 May 2021 08:07:36 GMT
- Title: Quantum Light Detection and Ranging
- Authors: Jiuxuan Zhao, Ashley Lyons, Arin Can Ulku, Hugo Defienne, Daniele
Faccio, Edoardo Charbon
- Abstract summary: Single-photon light detection and ranging (LiDAR) is a key technology for depth imaging through complex environments.
Despite recent advances, an open challenge is the ability to isolate the LiDAR signal from other sources.
We show that a time-resolved coincidence scheme can address these challenges by exploiting entangled photon pairs.
- Score: 1.588706071987041
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-photon light detection and ranging (LiDAR) is a key technology for
depth imaging through complex environments. Despite recent advances, an open
challenge is the ability to isolate the LiDAR signal from other spurious
sources including background light and jamming signals. Here we show that a
time-resolved coincidence scheme can address these challenges by exploiting
spatiotemporal correlations between entangled photon pairs. We demonstrate that
a photon-pair-based LiDAR can distill desired depth information in the presence
of both synchronous and asynchronous spurious signals without prior knowledge
of the scene and the target object. This result enables the development of
robust and secure quantum LiDAR systems and paves the way to time-resolved
quantum imaging applications.
Related papers
- Multiphoton Quantum Imaging using Natural Light [0.0]
We develop a quantum imaging scheme that relies on the use of natural sources of light.
We extract quantum features of the detected thermal photons to produce quantum images with improved signal-to-noise ratios.
Surprisingly, this measurement scheme enables the possibility of producing images from the vacuum fluctuations of the light field.
arXiv Detail & Related papers (2024-05-21T13:43:32Z) - Optical Quantum Sensing for Agnostic Environments via Deep Learning [59.088205627308]
We introduce an innovative Deep Learning-based Quantum Sensing scheme.
It enables optical quantum sensors to attain Heisenberg limit (HL) in agnostic environments.
Our findings offer a new lens through which to accelerate optical quantum sensing tasks.
arXiv Detail & Related papers (2023-11-13T09:46:05Z) - Compact All-Fiber Quantum-Inspired LiDAR with > 100dB Noise Rejection
and Single Photon Sensitivity [6.07319870953345]
Entanglement and correlation of quantum light can enhance LiDAR sensitivity in the presence of strong background noise.
We develop and demonstrate a quantum-inspired LiDAR prototype based on coherent measurement of classical time-frequency correlations.
arXiv Detail & Related papers (2023-07-31T23:23:47Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Quantum Induced Coherence Light Detection and Ranging [8.928976308064282]
We build a quantum induced coherence (QuIC) LiDAR without directly detecting the photons reflected from the object.
The reflected photons are used to erase the which-way information of its entangled partners.
This method paves a new way of battling noise in precise quantum electromagnetic sensing and ranging.
arXiv Detail & Related papers (2022-12-25T16:09:49Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - A Study on Quantum Radar Technology Developments and Design
Consideration for its integration [0.0]
Quantum radar systems supported by quantum measurement can fulfill not only conventional target detection and recognition tasks but are also capable of detecting and identifying the RF stealth platform and weapons systems.
The concept of a quantum radar has been proposed which utilizes quantum states of photons to establish information on a target at a distance.
arXiv Detail & Related papers (2022-05-25T06:53:23Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Fast Correlated-Photon Imaging Enhanced by Deep Learning [5.2618075333626075]
Correlated photon pairs, carrying strong quantum correlations, have been harnessed to bring quantum advantages to various fields.
We present an experimental fast correlated-photon imaging enhanced by deep learning.
arXiv Detail & Related papers (2020-06-16T18:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.