Multiphoton Quantum Imaging using Natural Light
- URL: http://arxiv.org/abs/2405.12794v1
- Date: Tue, 21 May 2024 13:43:32 GMT
- Title: Multiphoton Quantum Imaging using Natural Light
- Authors: Fatemeh Mostafavi, Mingyuan Hong, Riley B. Dawkins, Jannatul Ferdous, Rui-Bo Jin, Roberto de J. Leon-Montiel, Chenglong You, Omar S. Magana-Loaiza,
- Abstract summary: We develop a quantum imaging scheme that relies on the use of natural sources of light.
We extract quantum features of the detected thermal photons to produce quantum images with improved signal-to-noise ratios.
Surprisingly, this measurement scheme enables the possibility of producing images from the vacuum fluctuations of the light field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is thought that schemes for quantum imaging are fragile against realistic environments in which the background noise is often stronger than the nonclassical signal of the imaging photons. Unfortunately, it is unfeasible to produce brighter quantum light sources to alleviate this problem. Here, we overcome this paradigmatic limitation by developing a quantum imaging scheme that relies on the use of natural sources of light. This is achieved by performing conditional detection on the photon number of the thermal light field scattered by a remote object. Specifically, the conditional measurements in our scheme enable us to extract quantum features of the detected thermal photons to produce quantum images with improved signal-to-noise ratios. This technique shows a remarkable exponential enhancement in the contrast of quantum images. Surprisingly, this measurement scheme enables the possibility of producing images from the vacuum fluctuations of the light field. This is experimentally demonstrated through the implementation of a single-pixel camera with photon-number-resolving capabilities. As such, we believe that our scheme opens a new paradigm in the field of quantum imaging. It also unveils the potential of combining natural light sources with nonclassical detection schemes for the development of robust quantum technologies.
Related papers
- Engineering quantum states from a spatially structured quantum eraser [0.0]
Quantum interference can be enabled by projecting the quantum state onto ambiguous properties that render the photons indistinguishable.
By combining these ideas, here we design and experimentally demonstrate a simple and robust scheme that tailors quantum interference to engineer photonic states.
We believe these spatially-engineered multi-photon quantum states may be of significance in fields such as quantum metrology, microscopy, and communications.
arXiv Detail & Related papers (2023-06-24T00:11:36Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Deterministic Free-Propagating Photonic Qubits with Negative Wigner
Functions [0.0]
Coherent states ubiquitous in classical and quantum communications, squeezed states used in quantum sensing, and even highly-entangled states studied in the context of quantum computing can be produced deterministically.
We describe the first fully deterministic preparation of non-Gaussian Wigner-negative states of light, obtained by mapping the internal state of an intracavdberg superatom onto an optical qubit.
arXiv Detail & Related papers (2022-09-05T16:37:42Z) - Resolution of 100 photons and quantum generation of unbiased random
numbers [0.0]
Quantum detection of light is mostly relegated to the microscale.
The ability to perform measurements to resolve photon numbers is highly desirable for a variety of quantum information applications.
In this work, we extend photon measurement into the mesoscopic regime by implementing a detection scheme based on multiplexing highly quantum-efficient transition-edge sensors.
arXiv Detail & Related papers (2022-05-02T21:34:01Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Quantum dots as potential sources of strongly entangled photons for
quantum networks [0.0]
A network of quantum repeaters containing multiple sources of entangled photons would allow to overcome a natural limit for transmission distance.
Semiconductor quantum dots excel in this context as sub-poissonian sources of polarization entangled photon pairs.
We present the state-of-the-art set by GaAs based quantum dots and use them as a benchmark to discuss the challenges to overcome towards the realization of practical quantum networks.
arXiv Detail & Related papers (2020-11-25T13:39:46Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.