論文の概要: Ensemble-based Transfer Learning for Low-resource Machine Translation
Quality Estimation
- arxiv url: http://arxiv.org/abs/2105.07622v1
- Date: Mon, 17 May 2021 06:02:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-19 00:52:51.389967
- Title: Ensemble-based Transfer Learning for Low-resource Machine Translation
Quality Estimation
- Title(参考訳): 低リソース機械翻訳品質推定のためのアンサンブルベース変換学習
- Authors: Ting-Wei Wu, Yung-An Hsieh, Yi-Chieh Liu
- Abstract要約: 第5回機械翻訳会議(WMT20)の文レベルQE共有タスクに焦点を当てます。
このようなQEデータ不足の課題を克服するために、トランスファーラーニングを備えたアンサンブルベースの予測器推定QEモデルを提案する。
個々の言語で事前学習されたモデルと異なるレベルの並列学習コーパスと、ピアソンの相関値0.298とを組み合わせたアンサンブルモデルにおいて、最も優れた性能を実現する。
- 参考スコア(独自算出の注目度): 1.7188280334580195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quality Estimation (QE) of Machine Translation (MT) is a task to estimate the
quality scores for given translation outputs from an unknown MT system.
However, QE scores for low-resource languages are usually intractable and hard
to collect. In this paper, we focus on the Sentence-Level QE Shared Task of the
Fifth Conference on Machine Translation (WMT20), but in a more challenging
setting. We aim to predict QE scores of given translation outputs when barely
none of QE scores of that paired languages are given during training. We
propose an ensemble-based predictor-estimator QE model with transfer learning
to overcome such QE data scarcity challenge by leveraging QE scores from other
miscellaneous languages and translation results of targeted languages. Based on
the evaluation results, we provide a detailed analysis of how each of our
extension affects QE models on the reliability and the generalization ability
to perform transfer learning under multilingual tasks. Finally, we achieve the
best performance on the ensemble model combining the models pretrained by
individual languages as well as different levels of parallel trained corpus
with a Pearson's correlation of 0.298, which is 2.54 times higher than
baselines.
- Abstract(参考訳): 機械翻訳の品質評価 (QE) は、未知のMTシステムから与えられた翻訳出力の品質スコアを推定するタスクである。
しかし、低リソース言語のQEスコアは通常、難解で収集が難しい。
本稿では,機械翻訳に関する第5回会議(WMT20)のSentence-Level QE Shared Taskに焦点を当てる。
本研究の目的は、学習中にペア言語のQEスコアがほとんど与えられていない場合に、与えられた翻訳出力のQEスコアを予測することである。
我々は,他の雑多言語からのQEスコアと対象言語の翻訳結果を活用することで,このようなQEデータの不足を克服するためのトランスファー学習を用いたアンサンブルベースの予測器推定QEモデルを提案する。
評価結果に基づいて,多言語タスクにおける伝達学習の信頼性と一般化能力について,各拡張がQEモデルに与える影響を詳細に分析する。
最後に、各言語が事前学習したモデルと異なるレベルの並列学習コーパスと、ベースラインの2.54倍高い0.298のピアソン相関を組み合わせることで、アンサンブルモデルで最高の性能を得る。
関連論文リスト
- When LLMs Struggle: Reference-less Translation Evaluation for Low-resource Languages [9.138590152838754]
セグメントレベルの品質評価(QE)は言語間理解の難しい課題である。
ゼロ/フェーショットシナリオにおいて,大規模言語モデル (LLM) を包括的に評価する。
この結果から,エンコーダを用いた微調整QEモデルでは,プロンプトベースアプローチの方が優れていたことが示唆された。
論文 参考訳(メタデータ) (2025-01-08T12:54:05Z) - Improving Machine Translation with Human Feedback: An Exploration of Quality Estimation as a Reward Model [75.66013048128302]
本研究では,QEモデルを報酬モデルとして活用し,フィードバックトレーニングにおける人間の嗜好を予測する可能性について検討する。
まず,QEに基づくフィードバックトレーニングにおいて,翻訳品質が低下する中で,報酬の増大として現れる過度な最適化問題を同定した。
問題に対処するために,ルールを用いて誤った翻訳を検知し,報酬のスコアにペナルティ項を割り当てる,シンプルで効果的な手法を採用する。
論文 参考訳(メタデータ) (2024-01-23T16:07:43Z) - Don't Rank, Combine! Combining Machine Translation Hypotheses Using Quality Estimation [0.6998085564793366]
本研究は品質推定量(QE)を用いて翻訳を合成するQE融合を導入する。
提案手法は, 半数以上の症例において, 新規な翻訳を生成できることを実証する。
我々は、QE融合がプール内の候補数と線形にスケールすることを実証的に確立する。
論文 参考訳(メタデータ) (2024-01-12T16:52:41Z) - Unify word-level and span-level tasks: NJUNLP's Participation for the
WMT2023 Quality Estimation Shared Task [59.46906545506715]
我々は、WMT 2023 Quality Estimation (QE)共有タスクにNJUNLPチームを紹介する。
私たちのチームは2つのサブタスクすべてで英語とドイツ語のペアの予測を提出しました。
我々のモデルは、単語レベルと細粒度エラースパン検出サブタスクの両方において、英語とドイツ語で最高の結果を得た。
論文 参考訳(メタデータ) (2023-09-23T01:52:14Z) - PAXQA: Generating Cross-lingual Question Answering Examples at Training
Scale [53.92008514395125]
PAXQA(クロスリンガル(x)QAのアノテーションの計画)は、クロスリンガルQAを2段階に分解する。
本稿では、並列ビットから制約されたエンティティを抽出する語彙制約機械翻訳の新たな利用法を提案する。
これらのデータセットに基づいて微調整されたモデルは、複数の抽出されたQAデータセット上で、先行合成データ生成モデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-04-24T15:46:26Z) - QAmeleon: Multilingual QA with Only 5 Examples [71.80611036543633]
数ショットの学習環境下で事前学習した言語モデルを利用する方法を示す。
我々のアプローチであるQAmeleonは、PLMを使用して、QAモデルをトレーニングした多言語データを自動的に生成する。
言語毎に5つの例しか持たないデータ合成のためにPLMをプロンプトチューニングすることで、翻訳ベースのベースラインよりも精度が向上する。
論文 参考訳(メタデータ) (2022-11-15T16:14:39Z) - Alibaba-Translate China's Submission for WMT 2022 Quality Estimation
Shared Task [80.22825549235556]
我々は、UniTEという品質評価共有タスクにおいて、文レベルのMQMベンチマークを提出する。
具体的には、トレーニング中に3種類の入力形式と事前学習された言語モデルを組み合わせたUniTEのフレームワークを用いる。
その結果,我々のモデルは多言語・英語・ロシア語設定では第1位,英語・ドイツ語・中国語設定では第2位に達した。
論文 参考訳(メタデータ) (2022-10-18T08:55:27Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
画像認識言語理解評価ベンチマークについて紹介する。
IGLUEは、視覚的質問応答、クロスモーダル検索、グラウンドド推論、20言語にわたるグラウンドドエンターテイメントタスクをまとめて提供する。
翻訳-テストの転送はゼロショットの転送よりも優れており、少数ショットの学習は多くのタスクに役立てることが難しい。
論文 参考訳(メタデータ) (2022-01-27T18:53:22Z) - QEMind: Alibaba's Submission to the WMT21 Quality Estimation Shared Task [24.668012925628968]
我々は、WMT 2021 QE共有タスクに提出する。
テキストQEMindというQEシステムを構築するための翻訳の不確実性を評価するために有用な機能をいくつか提案する。
我々は、WMT 2020のダイレクトアセスメントQEタスクにおいて、我々の多言語システムが最高のシステムより優れていることを示す。
論文 参考訳(メタデータ) (2021-12-30T02:27:29Z) - Ensemble Fine-tuned mBERT for Translation Quality Estimation [0.0]
本稿では,WMT 2021 QE共有タスクの提出について論じる。
提案システムは多言語BERT(mBERT)に基づく回帰モデルのアンサンブルである。
ピアソンの相関に匹敵する性能を示し、いくつかの言語対に対してMAE/RMSEのベースラインシステムを破る。
論文 参考訳(メタデータ) (2021-09-08T20:13:06Z) - An Exploratory Analysis of Multilingual Word-Level Quality Estimation
with Cross-Lingual Transformers [3.4355075318742165]
単語レベルの多言語QEモデルは、現在の言語固有のモデルと同等に機能することを示す。
ゼロショットおよび少数ショットQEの場合、他の言語ペアで訓練されたモデルから、任意の新しい言語ペアに対する単語レベルの品質を正確に予測できることを実証する。
論文 参考訳(メタデータ) (2021-05-31T23:21:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。