Open-set Recognition based on the Combination of Deep Learning and
Ensemble Method for Detecting Unknown Traffic Scenarios
- URL: http://arxiv.org/abs/2105.07635v1
- Date: Mon, 17 May 2021 06:48:15 GMT
- Title: Open-set Recognition based on the Combination of Deep Learning and
Ensemble Method for Detecting Unknown Traffic Scenarios
- Authors: Lakshman Balasubramanian, Friedrich Kruber, Michael Botsch and Ke Deng
- Abstract summary: This work proposes a combination of Convolutional Neural Networks (CNN) and Random Forest (RF) for open set recognition of traffic scenarios.
By inheriting the ensemble nature of RF, the vote pattern of all trees combined with extreme value theory is shown to be well suited for detecting unknown classes.
- Score: 0.9711326718689492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An understanding and classification of driving scenarios are important for
testing and development of autonomous driving functionalities. Machine learning
models are useful for scenario classification but most of them assume that data
received during the testing are from one of the classes used in the training.
This assumption is not true always because of the open environment where
vehicles operate. This is addressed by a new machine learning paradigm called
open-set recognition. Open-set recognition is the problem of assigning test
samples to one of the classes used in training or to an unknown class. This
work proposes a combination of Convolutional Neural Networks (CNN) and Random
Forest (RF) for open set recognition of traffic scenarios. CNNs are used for
the feature generation and the RF algorithm along with extreme value theory for
the detection of known and unknown classes. The proposed solution is featured
by exploring the vote patterns of trees in RF instead of just majority voting.
By inheriting the ensemble nature of RF, the vote pattern of all trees combined
with extreme value theory is shown to be well suited for detecting unknown
classes. The proposed method has been tested on the highD and OpenTraffic
datasets and has demonstrated superior performance in various aspects compared
to existing solutions.
Related papers
- Adapting Vision-Language Models to Open Classes via Test-Time Prompt Tuning [50.26965628047682]
Adapting pre-trained models to open classes is a challenging problem in machine learning.
In this paper, we consider combining the advantages of both and come up with a test-time prompt tuning approach.
Our proposed method outperforms all comparison methods on average considering both base and new classes.
arXiv Detail & Related papers (2024-08-29T12:34:01Z) - ROG$_{PL}$: Robust Open-Set Graph Learning via Region-Based Prototype
Learning [52.60434474638983]
We propose a unified framework named ROG$_PL$ to achieve robust open-set learning on complex noisy graph data.
The framework consists of two modules, i.e., denoising via label propagation and open-set prototype learning via regions.
To the best of our knowledge, the proposed ROG$_PL$ is the first robust open-set node classification method for graph data with complex noise.
arXiv Detail & Related papers (2024-02-28T17:25:06Z) - Exploring Diverse Representations for Open Set Recognition [51.39557024591446]
Open set recognition (OSR) requires the model to classify samples that belong to closed sets while rejecting unknown samples during test.
Currently, generative models often perform better than discriminative models in OSR.
We propose a new model, namely Multi-Expert Diverse Attention Fusion (MEDAF), that learns diverse representations in a discriminative way.
arXiv Detail & Related papers (2024-01-12T11:40:22Z) - Open-Set Automatic Target Recognition [52.27048031302509]
Automatic Target Recognition (ATR) is a category of computer vision algorithms which attempts to recognize targets on data obtained from different sensors.
Existing ATR algorithms are developed for traditional closed-set methods where training and testing have the same class distribution.
We propose an Open-set Automatic Target Recognition framework where we enable open-set recognition capability for ATR algorithms.
arXiv Detail & Related papers (2022-11-10T21:28:24Z) - Opening Deep Neural Networks with Generative Models [2.0962464943252934]
We propose GeMOS: simple and plug-and-play open set recognition modules that can be attached to pretrained Deep Neural Networks for visual recognition.
The GeMOS framework pairs pre-trained Convolutional Neural Networks with generative models for open set recognition to extract open set scores for each sample.
We conduct a thorough evaluation of the proposed method in comparison with state-of-the-art open set algorithms, finding that GeMOS either outperforms or is statistically indistinguishable from more complex and costly models.
arXiv Detail & Related papers (2021-05-20T20:02:29Z) - Conditional Variational Capsule Network for Open Set Recognition [64.18600886936557]
In open set recognition, a classifier has to detect unknown classes that are not known at training time.
Recently proposed Capsule Networks have shown to outperform alternatives in many fields, particularly in image recognition.
In our proposal, during training, capsules features of the same known class are encouraged to match a pre-defined gaussian, one for each class.
arXiv Detail & Related papers (2021-04-19T09:39:30Z) - Collective Decision of One-vs-Rest Networks for Open Set Recognition [0.0]
We propose a simple open set recognition (OSR) method based on the intuition that OSR performance can be maximized by setting strict and sophisticated decision boundaries.
The proposed method performed significantly better than the state-of-the-art methods by effectively reducing overgeneralization.
arXiv Detail & Related papers (2021-03-18T13:06:46Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z) - One-vs-Rest Network-based Deep Probability Model for Open Set
Recognition [6.85316573653194]
An intelligent self-learning system should be able to differentiate between known and unknown examples.
One-vs-rest networks can provide more informative hidden representations for unknown examples than the commonly used SoftMax layer.
The proposed probability model outperformed the state-of-the art methods in open set classification scenarios.
arXiv Detail & Related papers (2020-04-17T05:24:34Z) - Conditional Gaussian Distribution Learning for Open Set Recognition [10.90687687505665]
We propose Conditional Gaussian Distribution Learning (CGDL) for open set recognition.
In addition to detecting unknown samples, this method can also classify known samples by forcing different latent features to approximate different Gaussian models.
Experiments on several standard image reveal that the proposed method significantly outperforms the baseline method and achieves new state-of-the-art results.
arXiv Detail & Related papers (2020-03-19T14:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.