論文の概要: OntoEA: Ontology-guided Entity Alignment via Joint Knowledge Graph
Embedding
- arxiv url: http://arxiv.org/abs/2105.07688v1
- Date: Mon, 17 May 2021 09:18:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 15:30:08.886309
- Title: OntoEA: Ontology-guided Entity Alignment via Joint Knowledge Graph
Embedding
- Title(参考訳): OntoEA: 統合知識グラフ埋め込みによるオントロジー誘導エンティティアライメント
- Authors: Yuejia Xiang, Ziheng Zhang, Jiaoyan Chen, Xi Chen, Zhenxi Lin, Yefeng
Zheng
- Abstract要約: OntoEAというオントロジー誘導エンティティアライメント手法を提案する。
7つの公開および産業ベンチマークの実験は、OntoEAの最先端のパフォーマンスを実証した。
- 参考スコア(独自算出の注目度): 22.47525303095817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic embedding has been widely investigated for aligning knowledge graph
(KG) entities. Current methods have explored and utilized the graph structure,
the entity names and attributes, but ignore the ontology (or ontological
schema) which contains critical meta information such as classes and their
membership relationships with entities. In this paper, we propose an
ontology-guided entity alignment method named OntoEA, where both KGs and their
ontologies are jointly embedded, and the class hierarchy and the class
disjointness are utilized to avoid false mappings. Extensive experiments on
seven public and industrial benchmarks have demonstrated the state-of-the-art
performance of OntoEA and the effectiveness of the ontologies.
- Abstract(参考訳): セマンティック埋め込みは知識グラフ(KG)エンティティの整合性について広く研究されている。
現在の手法では、グラフ構造(エンティティ名と属性)を探索・活用しているが、クラスやエンティティとの関係性といった重要なメタ情報を含むオントロジ(あるいはオントロジスキーマ)は無視している。
本稿では, kgsとオントロジを併用したオントロジー型エンティティアライメント手法であるオンテアを提案し,クラス階層とクラス非結合性を利用して誤ったマッピングを回避する。
7つの公開および産業ベンチマークに関する大規模な実験は、オントEAの最先端性能とオントロジーの有効性を実証した。
関連論文リスト
- Attr-Int: A Simple and Effective Entity Alignment Framework for Heterogeneous Knowledge Graphs [9.725601872648566]
エンティティアライメント(EA)とは、異なる知識グラフ(KG)内のエンティティをリンクすることである。
本稿では, 異種KG間の整合性の問題について検討し, 対処する。
本稿では,Attr-Intと呼ばれるシンプルで効果的なエンティティアライメントフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T10:16:56Z) - DERA: Dense Entity Retrieval for Entity Alignment in Knowledge Graphs [3.500936203815729]
エンティティアライメント(EA)のための高密度エンティティ検索フレームワークを提案する。
我々は言語モデルを活用し、エンティティの様々な特徴を均一にエンコードし、知識グラフ(KG)をまたいで最も近いエンティティ検索を容易にする。
提案手法は,既存のEA手法と比較して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-08-02T10:12:42Z) - Nested Named Entity Recognition from Medical Texts: An Adaptive Shared
Network Architecture with Attentive CRF [53.55504611255664]
ネスト現象によるジレンマを解決するために,ASACと呼ばれる新しい手法を提案する。
提案手法は,適応共有(AS)部と注意条件付きランダムフィールド(ACRF)モジュールの2つの鍵モジュールを含む。
我々のモデルは、異なるカテゴリのエンティティ間の暗黙の区別と関係をキャプチャすることで、より良いエンティティ表現を学ぶことができる。
論文 参考訳(メタデータ) (2022-11-09T09:23:56Z) - EventEA: Benchmarking Entity Alignment for Event-centric Knowledge
Graphs [17.27027602556303]
過去の進歩は偏りと不整合性評価によるものであることが示されています。
我々は、イベント中心のKGに基づいて、異種関係と属性を持つ新しいデータセットを構築した。
この問題に対する新たなアプローチとして,エンティティアライメントのためのタイムアウェアリテラルエンコーダを提案する。
論文 参考訳(メタデータ) (2022-11-05T05:34:21Z) - Exploiting Global Semantic Similarities in Knowledge Graphs by
Relational Prototype Entities [55.952077365016066]
実証的な観察では、頭と尾のエンティティが同じ関係で結ばれている場合、しばしば同様の意味的属性を共有する。
我々は、textittextbfrelational prototype entityと呼ばれる仮想ノードのセットを導入する新しいアプローチを提案する。
エンティティの埋め込みを、関連するプロトタイプの埋め込みに近づけることで、私たちのアプローチは、エンティティのグローバルな意味的類似性を効果的に促進できる。
論文 参考訳(メタデータ) (2022-06-16T09:25:33Z) - Knowledge-Rich Self-Supervised Entity Linking [58.838404666183656]
Knowledge-RIch Self-Supervision(KRISSBERT$)は400万のUMLSエンティティのためのユニバーサルエンティティリンカーである。
提案手法はゼロショット法と少数ショット法を仮定し,利用可能であればエンティティ記述やゴールドレファレンスラベルを簡単に組み込むことができる。
ラベル付き情報を一切使わずに400万のUMLSエンティティのためのユニバーサルエンティティリンカである$tt KRISSBERT$を生成する。
論文 参考訳(メタデータ) (2021-12-15T05:05:12Z) - Why Settle for Just One? Extending EL++ Ontology Embeddings with
Many-to-Many Relationships [2.599882743586164]
知識グラフ埋め込みは、知識グラフの実体と関係の低次元表現を提供する。
この方向の最近の取り組みは、EL++と呼ばれる記述(記述のための論理論理)への埋め込みの学習である。
我々は、埋め込み表現を学習しながら、多対多の関係を考慮できる、シンプルで効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2021-10-20T13:23:18Z) - Unsupervised Knowledge Graph Alignment by Probabilistic Reasoning and
Semantic Embedding [22.123001954919893]
本稿では,確率論的推論とセマンティック埋め込みに基づくPRASEという反復的フレームワークを提案する。
PRASEフレームワークは、異なる埋め込みベースのモデルと互換性があり、複数のデータセットの実験では、その最先端性能が実証されている。
論文 参考訳(メタデータ) (2021-05-12T11:27:46Z) - Neural Production Systems [90.75211413357577]
視覚環境は、異なるオブジェクトまたはエンティティから構成される。
イメージをエンティティに分割するために、ディープラーニング研究者は構造的誘導バイアスを提案した。
私たちは認知科学からインスピレーションを得て、一連のルールテンプレートからなる古典的なアプローチを復活させます。
このアーキテクチャは柔軟でダイナミックな制御フローを実現し、エンティティ固有およびルールベースの情報を分解するのに役立つ。
論文 参考訳(メタデータ) (2021-03-02T18:53:20Z) - Hierarchical Image Classification using Entailment Cone Embeddings [68.82490011036263]
まずラベル階層の知識を任意のCNNベースの分類器に注入する。
画像からの視覚的セマンティクスと組み合わせた外部セマンティクス情報の利用が全体的な性能を高めることを実証的に示す。
論文 参考訳(メタデータ) (2020-04-02T10:22:02Z) - Relational Message Passing for Knowledge Graph Completion [78.47976646383222]
本稿では,知識グラフ補完のためのリレーショナルメッセージパッシング手法を提案する。
エッジ間でリレーショナルメッセージを反復的に送信し、近隣情報を集約する。
その結果,本手法は最先端の知識完成手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2020-02-17T03:33:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。