Contemporary Research Trends in Response Robotics
- URL: http://arxiv.org/abs/2105.07812v2
- Date: Thu, 31 Mar 2022 21:59:58 GMT
- Title: Contemporary Research Trends in Response Robotics
- Authors: Mehdi Dadvar, Soheil Habibian
- Abstract summary: This paper analyzes the technical content, statistics, and implications of the literature from bibliometric standpoints.
The aim is to study the global progress of response robotics research and identify the contemporary trends.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The multidisciplinary nature of response robotics has brought about a
diversified research community with extended expertise. Motivated by the recent
accelerated rate of publications in the field, this paper analyzes the
technical content, statistics, and implications of the literature from
bibliometric standpoints. The aim is to study the global progress of response
robotics research and identify the contemporary trends. To that end, we
investigated the collaboration mapping together with the citation network to
formally recognize impactful and contributing authors, publications, sources,
institutions, funding agencies, and countries. We found how natural and
human-made disasters contributed to forming productive regional research
communities, while there are communities that only view response robotics as an
application of their research. Furthermore, through an extensive discussion on
the bibliometric results, we elucidated the philosophy behind research priority
shifts in response robotics and presented our deliberations on future research
directions.
Related papers
- Generative AI in Evidence-Based Software Engineering: A White Paper [10.489725182789885]
In less than a year practitioners and researchers witnessed a rapid and wide implementation of Generative Artificial Intelligence.
Textual GAIs capabilities enable researchers worldwide to explore new generative scenarios simplifying and hastening all timeconsuming text generation and analysis tasks.
Based on our current investigation we will follow up the vision with the creation and empirical validation of a comprehensive suite of models to effectively support EBSE researchers.
arXiv Detail & Related papers (2024-07-24T17:16:17Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is a large language model-powered research idea writing agent.
It generates problems, methods, and experiment designs while iteratively refining them based on scientific literature.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - A Disruptive Research Playbook for Studying Disruptive Innovations [11.619658523864686]
We propose a research playbook with the goal of providing a guide to formulate compelling and socially relevant research questions.
We show it can be used to question the impact of two current disruptive technologies: AI and AR/VR.
arXiv Detail & Related papers (2024-02-20T19:13:36Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence.
All of this work is aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI.
In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends.
arXiv Detail & Related papers (2023-02-16T08:59:42Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Software-Based Dialogue Systems: Survey, Taxonomy and Challenges [4.2763155274587366]
This paper reports a survey of the current state of research of conversational agents through a systematic literature review of secondary studies.
As a result, this research proposes a holistic taxonomy of the different dimensions involved in the conversational agents' field.
arXiv Detail & Related papers (2021-06-21T07:41:44Z) - Semantics for Robotic Mapping, Perception and Interaction: A Survey [93.93587844202534]
Study of understanding dictates what does the world "mean" to a robot.
With humans and robots increasingly operating in the same world, the prospects of human-robot interaction also bring semantics into the picture.
Driven by need, as well as by enablers like increasing availability of training data and computational resources, semantics is a rapidly growing research area in robotics.
arXiv Detail & Related papers (2021-01-02T12:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.